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Presentation Outline

« A primer on supervised learning

« Three machine learning (ML) examples

- Topology-aware learning for real-time market
- Risk-aware learning for DER coordination
- Scalable learning for grid emergency responses

« Summary
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A primer on supervised learning

> Unknown joint distribution for (z,y) € R x Y
Classification: Y = {+1}orY ={1, ..., C}
Regression: Y = R?

> Given examples, aka, data samples {(xx, yx)}

X . Input feature

Yi. output target/label
> Without y,, => unsupervised or semi-supervised learning

> Samples from dynamical systems => reinforcement learning



Learning problem formulation

> Goal: construct a function f: R® Y tomapx —y

Predicted value y = f(x) € Y to be close to y

X y
Loss function: ((§,y) = Il(f(x),y) =0 _’n '

For regression, use L, norms [($,y) = |19 — y||p

For classification, cross-entropy loss, hinge loss, etc.

Sample Mean

f* = ar%E%in E(ey U(f(2),y) > f = argmin _Zl r)

fEF

> Excellent generalization (error bounds on f* — f )performance?

Vidal, Rene, et al. "Mathematics of deep learning." arXiv preprint arXiv:1712.04741 (2017).
Bartlett, Peter L., Andrea Montanari, and Alexander Rakhlin. "Deep learning: a statistical viewpoint." arXiv preprint arXiv:2103.09177 (2021).



Parameterized models for f

> Impossible to search over any function f => parameterization

> Linear f(z)=w'x+w, parameterized by w ¢ R% and wy € R

A simple model structure to use

Linear Nonlinear
Linear regression (LS, LAV) ° ’ L °®e
Linear classification (logistic regression or SVM) 00® - ¢ .' e
® o - o /
o ©® *°
o
> Nonlinear f for better prediction

Polynomials, Gaussian Processes (GPs), etc.
Kernel learning: f € H (Hilbert space for some kernel)

Neural networks (NN): layers of nonlinear functions.



Regularization

Under-fitting Appropriate-fitting

> Data overfitting (losses — 0)

(too simple to
explain the
variance)

Features redundant: e.g., both x; and —x;
Models too complex: high-order polynomials, deep neural networks

We can fit any K data samples perfectly using a (K-1)-th order polynomials

) norm of
f argerlgm Zl ) +X-Reg(f) [ parameter W]

Hyperparameter A > 0 balances between data fitting and model complexity
L, norm/Ridge: small values, or smooth using ¥;(w; — w;_;)?

L, norm/Lasso: sparse w (much more zero entries)

X

X X 5 XXX
XX X

Over-fitting

(forcefitting - too
good to be true)



Deep (D)NN architecture

> Perceptron (single-layer NN): convert  f(z) =w 'z

to a nonlinear function by f(z) = o(w' )

L

hidden units

nonlinear activation o(-) : sigmoid, Tanh, ReLU

» NNSs: basically multi-layer perceptron (MLP)
Layered, feed-forward networks (input X, output y)
Hidden layers also called neutrons or units

2-layer NNs can express all continuous functions,
while for any nonlinear ones 3 layers are sufficient

Deep Learning book https://www.deeplearningbook.org/



https://www.deeplearningbook.org/

Gradient descent (GD) via backpropagation

w=argmin F(w):= Loss(w) + AReg(w)
Nonlinear f => nonconvex opt. problem st 1 e v cevavs
GD-based learning
wew—aVE(w)
In practice, local minima may not be a
concern [LeCun, 2014]

Efficient computation of gradient in a
backward way using the “chain rule”




Variations of DNN

> Fully-connected NN (FCNN): weight parameters grow with data size

> |dea: reuse the weight parameters, aka, filters!
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Convolutional NN (CNN): Recurrent NN (RNN): Graph NN (GNNs):

Spatial filters for images/video . Temporal filters for texts, speech ~ :  Graph filters for networked systems
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Overview

> We visit three problems that use domain knowledge to better design NN
models that are physics-informed and risk-aware

O O @ :
WO .. O ® :
N3 o he S ; |
g0 ORe &,
,Oo/\o : — = ) . . .
O O @ : Communication link :
B Fast meter /A failure  load shedding
Topology-aware learning  : Risk-aware learning for DER Scalable learning for grid
for real-time market: coordination: emergency responses:
Simpler model for efficient training ¢ Reduced risks of voltage violations Fast mitigations under limited data :
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PART I: TOPOLOGY-AWARE LEARNING
FOR REAL-TIME MARKET
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ML for optimal power flow (OPF)

\. / | N /
Powerful OPF Neural Network
Solvers (NN)

Model

> Real-time computation of the OPF solutions by learning the I/O mapping

13



Existing work and our focus

> Integration of renewable, flexible resources increases the grid variability and
motivates real-time, fast OPF via training a neural network (NN)

Identifying the active constraints (for dc-OPF) [Misra et al’19][Deka et al’19]
Directly mapping the ac-OPF solutions [Guha et al’19]

Warm start the search for ac feasible solution [Baker '19] [Zamzam et al’20]
> Address the uncertainty in stochastic OPF [Mezghani et al’20]
> Connect to the duality analysis of convex OPF [Chen et al'’20] [Singh et al'20]

Focus: Exploit the grid topology to reduce the NN model complexity

14



OPF for real-time market

> Power network modeled as a graph G = (V,&) with N nodes

> ac-OPF for all nodal injections

N Nodal input:
g’gg D i=1 Ci(ps) xi 2 [Bi,p.. @i g, 0] € RY
s.t. p+jq=diag(v)(Yv)” power limits + costs
V<|v|<V Nodal output: optimal p/g ?
P<P=P Fully-connected (FC)NN
q<qg=<q
o< fii(v) < fij, V(i,j)€€& FCNN layer has O(N?) parameters!

15



Topology dependence

> [Owerko et al’20] uses graph learning to predict p/q
> Locational marginal price (LMP) from the dual problem

Strongly depends on the graph topology and congested lines

- gctive

ISF (injection shift factor) matrix S from graph Laplacian

N R

) N
/mll'lp Zizl C’L(p’L) Ti= )21 — ST(I-_JI* T M*)

s.t. 1'p=0 DA
_ m) S' =B 'A'X"!

shares the same eigen-space

as the graph Laplacian By

N ) U
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LMP map with locality
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Graph NN (GNN): topology-based filterinn

> Input formed by nodal features as rows ' \ : > o
_/
X0 = {x;} € RVxd | -
» GNN layer [ with learnable parameters b _»

Xl = o (WXH' + bf)

/If lines are sparse |€| ~ O(WD\

Topology-based graph filter W € RY > and let D = max;{d;}, then
I the number of parameters for
(Wlij =0if (4,j) ¢ € each GNN layer is
Feature filters {H*} explore higher-dim. mapping | O(N + D?) Y,

Compared to FCNN O(N?)

Hamilton, William L. "Graph representation learning." 2020.
https://www.cs.mcqill.ca/~wlh/grl_book/
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GNN for predicting LMPs

> LMP prediction [Ji et al'16, Geng et al’16]
> GNN-based LMP can determine the optimal p/f

f(X; 9)\ . dispatch .,
4

X 7t s P (7) = £ ()

» Feasibility-regularization (FR) to reduce line flow violations

£(6) = |lm — &3 + A||o (| (7)) — F)

1

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Graph Neural Networks for Learning Real-Time Prices in Electricity Market."

ICML Workshop on Tackling Climate Change with Machine Learning, 2021. https://arxiv.org/abs/2106.10529

19
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LMP prediction results

> 118-bus + ac-opf and 2382-bus + dc-opf; GNN/FCNN + feasibility regularization (FR)

> Metrics: LMP and p, prediction error; line flow limit violation rate
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GNN for classifying congested lines

> Classifying the status for the top 10 congested lines with cross-entropy loss
> Metrics: recall (true positive rate), F1 score

> GNN better in performance scaling for large systems, thanks to reduced
complexity

118ac Recall F1 score 2383dc Recall F1 score
GNN 98.40% 96.10% GNN 90.00% 81.40%

FCNN 97.70% 94.60% FCNN 87.30% 78.30%

21



Topology adaptivity

> In addition to reduced complexity, GNN-based
prediction can easily adapt to varying grid

topology
> Pre-trained GNN for a nominal topology can

warm-start the learning for randomly selected
two-line outages

> Re-trained process takes only 3-5 epochs to
converge to good prediction

> Currently pursuing to formally analyze this
transfer capability
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PART Il: RISK-AWARE LEARNING FOR
VOLTAGE SAFETY IN DISTRIBUTION GRIDS



ML for distributed energy resources (DERS)

* Rising DERSs at grid edge motivate scalable & efficient coordination to
support the operations of connected distribution grids

« Lack of frequent, real-time communications
 Distribution control center or DMS may broadcast messages to the full system

Tl @ B Fast meter/D-PMU
-7 (sub-second)
el I Slow meter
\ / - @ \. (15 minutes - 1 hour)
s

Distribution Substation

Liu, Hao Jan, Wei Shi, and Hao Zhu. "Hybrid voltage control in distribution networks under limited communication rates.”
IEEE Transactions on Smart Grid 10.3 (2018): 2416-2427.

Molzahn, Daniel K., et al. "A survey of distributed optimization and control algorithms for electric power

systems.” IEEE Transactions on Smart Grid 8.6 (2017): 2941-2962.
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Existing work and our focus

> Scalable DER operations as a special instance of OPF

Kernel SVM learning [Karagiannopoulos et al’19],[Jalali et al’20]
DNNs for ac-/dc-OPF [see Part ]
Reinforcement learning (RL) [Yang et al’20, Wang et al’19]

> Enforcing network constraints is challenging

Heuristic projection or penalizing the violations

Focus: Address the statistical risks to ensure safe operational grid limits

25



Optimal DER coordination

Central
Controller
| | 1y n
> DERSs for voltage regulation and power loss reduction <« =|| |
pe
z = min Losses(q) Q  : available reactive power
qee X : network matrix
s to Xq+h(y)-v <0 y : operating condition B Fast meter
—Xq—-h(y)+v v, Vv : voltage limits

» (Multi-phase) linearized dist. flow (LDF) model leads to a convex QP
» But a centralized solution requires high communication rates

26



ML for DER optimization

> Similar to OPF, want to predict ®(y;¢) — z

» Learn a scalable NN model, one for each node n

+1 ¢ - ‘Comunication link
n = 0(Woy, +by) B Fast meter

@ = {W¢ b’l : nodal weights to be learned

» Similarly, we can use GNN architecture such that all nodes use the same filter

» Average loss function: mean-square error (MSE)

min /() ze (i @)ze)  with £(D(ye; @), zk) = | ®(y; @) — 2l

27



Risk-aware learning

» Consider the conditional value-at-risk (CVaR) for predicting z
Yalp) : Zﬁ (Vi3 ), 21) X LU P(yr; ), 21) = v}

for a given significance level « € (0,1)

MSE Loss

Maximum Loss

P

Frequency

[ min f(¢) + Ma(p) ]

A: regularization hyperparameter
CVaR turns out very useful for voltage constraints

Shanny Lin, Shaohui Liu, and Hao Zhu. "Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids," Power Systems
Computation Conference (PSCC) 2022 (accepted), https://arxiv.org/abs/2110.01490

28
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Accelerating CVaR learning

» CVaR loss is known to preserve convexity of loss function

But the NN model is typically nonconvex; recent extension [Kalogerias'21]

> Akey computation challenge IS learning efficiency with worst-case samples
Zf (yr:)s 1) X LU (yw; ), 2x) > v}

Modern sampling-based ML tools reduces the accuracy of gradient computation

» We developed a straightforward mini-batch selection algorithm (Alg. 1 later)
that only uses those of sufficient risk value for computing gradient

29



Risk of predicting q decisions

» |EEE 123-bus system with six DER nodes of flexible q output

All DERs use limited power information to learn the optimal decision

» Error performance very similar due to the high prediction accuracy

» Yet, training time accelerated by CVaR and the proposed selection algorithm

error

hit

¢® MSE
* CVaR(qg)+Algl +
Y CVaR(q9)

o

Table 1: Computation time

Loss obj. Epoch [s] Total [s]
MSE 0.952 46.48
CVaR(qg) 1.07 38.70
CVaR(qg)+Alg 1 0.61  35.63

0 1 2 3 4

node index
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Risk of voltage violation

» Further incorporating the CVaR of voltage prediction

» Reduced max voltage deviation (worst-case) -> higher operational safety

» Computational efficiency improved by the proposed selection algorithm

i}

O_

Table 1: Computation time

—— CVaR(qg,dv)
> ~— CVaR(qg,dv)+Algl
§ MSE
§- Optimal qg

Loss obj. Epoch [s| Total [s]
MSE 0.54 44.89
CVaR(qg,dv) 0.77 31.73
CVaR(qg,dv)+Alg 1 0.51 25.93

voltage deviation p.u.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
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PART lll: SCALABLE LEARNING OF
EMERGENCY RESPONSES FOR RESILIENCE

32



Grid emergency responses

« Grid resilience challenged by emerging
types of variable energy resources
(VERS), and increasingly by extreme
weather events

It imperative to design the grid operations
with effective emergency responses
« Load shedding
« Topology optimization
 How to attain the decisions in a scalable
and safe manner?




Centralized optimal load shedding (OLS)

> Load shedding determined by control center with system-wide information

> AC Optimal load shedding (OLS) program cast as a special case of AC-OPF

34



ML for decentralized load shedding

> Each load learns optimal decision rule from a large of historical or synthetic scenarios

12 (13} Fr equency
/N @ Voltage w \/f\/\
= fid

Input feature:

Line Flow
(v} {4} Demand ,
pf,qf [pzanav {p’l,_]} {q@j} W]
Optimal
Decision & . .
vi » Local shedding solutions:

-
¥ e e Ta
) ) ) |

(O: node (bus) A\: failure (~): load shedding Yy; = [pf, qf]

Yuqi Zhou, Jeehyun Park, and Hao Zhu, “Scalable Learning for Optimal Load Shedding Under Power Grid Emergency
Operations,” PES General Meeting (PESGM) 2022 (accepted) https://arxiv.org/abs/2111.11980
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Scalable learning of load shedding

— > Offline training is
[Conﬁnge“"y of Loxd Sample] [ Contingency | performed for various
Generation Generation T
o N contingency and load
AC Power Flow AC-OLS solver €, [}}\Zfasi?:ni?;:l] . g y
conditions
T [ Local ] [ Optlinjlal ] i » fi(s304)
Input Data Decision —— > Load centers quickly
- redicte o ]
l , J Training . [Load Shedding] make decisions during
Offline 0% Decision Rule fil 1) Online online phase in

response to
contingencies.
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Prediction under single line outage

> |EEE 14-bus system; quadratic cost functions

> All (N — 1) contingency scenarios, under different load conditions (1000
samples for each scenario)

I ] 25 T T T T T T T T T
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L | 1 1 1 1 1 1 1 O | | 1 1 | 1 1 | |
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(a) Load center at bus 10 (b) Load center at bus 14



Summary

6 0 @
0.0y® 03,0.0®
S SUe.3US SUY me
O _ 0O {‘ @) ‘ (L’\O O {O g.,?,,m
O"o6MNe 0No-0"e — - =
O O @ Communication link :
B Fast meter A\ failure  load shedding
Topology-aware learning | Risk-aware learning for DER Scalable learning for grid
for real-time market: coordination: emergency responses:
Simpler model for efficient training ¢ Reduced risks of voltage violations Fast mitigations under limited data

> |: Topology adaptivity and other transfer learning ideas
> |l: Convergence analysis and connections to safe learning

> |ll: Generalized emergency responses and risk-awareness
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Education resources

> UT grad course “Data Analytics in Power Systems,” new slides available
https://utexas.app.box.com/v/IEE394VDatalnPowerSys

> 2020 NSF Workshop on Forging Connections between Machine Learning,
Data Science, & Power Systems Research

https://sites.google.com/umn.edu/ml-ds4pes/home

> DOE-funded EPRI GEAT with Data
https://grided.epri.com/great with data.html
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Learning and Optimization Hao Zhu
haozhu@utexas.edu

for Smarter Electricity Infrastructure  rpiisices.texas.eduaozhu
@HaozZhu6

Learning for grid resilience
Learning for dynamic resources

Learning for power electronics based resources

Thank you!
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