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Presentation Outline

• A primer on supervised learning

• Three machine learning (ML) examples

- Topology-aware learning for real-time market

- Risk-aware learning for DER coordination

- Scalable learning for grid emergency responses

• Summary
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Power of AI   
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⮚ Unprecedented opportunities offered by 

diverse sources of data

▪ Synchrophasor and IED data

▪ Smart meter data

▪ Weather data

▪ GIS data, .....

How to harness the power of ML to 

tackle problem-specific challenges in 

real-time power system operations?



A primer on supervised learning

4

⮚ Unknown joint distribution for

▪ Classification: 𝑌 = ±1 or 𝑌 = 1,… , 𝐶

▪ Regression: 𝑌 = 𝑅𝑏

⮚ Given examples, aka, data samples {(𝑥𝑘 , 𝑦𝑘)}

▪ 𝑥𝑘: input feature 

▪ 𝑦𝑘: output target/label

⮚ Without 𝑦𝑘 => unsupervised or semi-supervised learning

⮚ Samples from dynamical systems => reinforcement learning



Learning problem formulation
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⮚ Goal: construct a function                         to map 𝑥 → 𝑦

▪ Predicted value ො𝑦 = 𝑓 𝑥 ∈ 𝑌 to be close to 𝑦

▪ Loss function: 𝑙 ො𝑦, 𝑦 = 𝑙 𝑓 𝑥 , 𝑦 ≥ 0

▪ For regression, use 𝐿𝑝 norms 𝑙 ො𝑦, 𝑦 = ො𝑦 − 𝑦
𝑝

▪ For classification, cross-entropy loss, hinge loss, etc.

Sample Mean

➢ Excellent generalization (error bounds on               ) performance?

Vidal, Rene, et al. "Mathematics of deep learning." arXiv preprint arXiv:1712.04741 (2017).

Bartlett, Peter L., Andrea Montanari, and Alexander Rakhlin. "Deep learning: a statistical viewpoint." arXiv preprint arXiv:2103.09177 (2021).

𝑓
𝑥 𝑦



Parameterized models for f 
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⮚ Impossible to search over any function f => parameterization

⮚ Linear parameterized by               and 

▪ A simple model structure to use

▪ Linear regression (LS, LAV) 

▪ Linear classification (logistic regression or SVM)

⮚ Nonlinear 𝑓 for better prediction

▪ Polynomials, Gaussian Processes (GPs), etc.

▪ Kernel learning:               (Hilbert space for some kernel)

▪ Neural networks (NN): layers of nonlinear functions.



Regularization 
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⮚ Data overfitting (losses → 0)

▪ Features redundant: e.g., both 𝑥𝑖 and −𝑥𝑖

▪ Models too complex: high-order polynomials, deep neural networks

▪ We can fit any K data samples perfectly using a (K-1)-th order polynomials 

▪ Hyperparameter 𝜆 > 0 balances between data fitting and model complexity

▪ 𝐿2 norm/Ridge: small values, or smooth using σ𝑖 𝑤𝑖 −𝑤𝑖−1
2

▪ 𝐿1 norm/Lasso: sparse 𝑤 (much more zero entries) 

norm of 
parameter 𝑤



Deep (D)NN architecture 
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⮚ Perceptron (single-layer NN): convert                           

to a nonlinear function by 

▪ nonlinear activation 𝜎 ⋅ : sigmoid, Tanh, ReLU

➢ NNs: basically multi-layer perceptron (MLP)

▪ Layered, feed-forward networks (input x, output y)

▪ Hidden layers also called neutrons or units

▪ 2-layer NNs can express all continuous functions, 

while for any nonlinear ones 3 layers are sufficient

𝑓
𝑥 𝑦

Deep Learning book https://www.deeplearningbook.org/

https://www.deeplearningbook.org/


Gradient descent (GD) via backpropagation

• Nonlinear f => nonconvex opt. problem

• GD-based learning 

𝑤 ← 𝑤 − 𝛼𝛻𝐸(𝑤)

• In practice, local minima may not be a 

concern [LeCun, 2014]

• Efficient computation of gradient in a 

backward way using the “chain rule”

9



Variations of DNN
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⮚ Fully-connected NN (FCNN): weight parameters grow with data size

⮚ Idea: reuse the weight parameters, aka, filters! 

Recurrent NN (RNN): 
Temporal filters for texts, speech

Convolutional NN (CNN): 
Spatial filters for images/video

Graph NN (GNNs): 
Graph filters for networked systems



Overview

11

⮚ We visit three problems that use domain knowledge to better design NN 

models that are physics-informed and risk-aware

Risk-aware learning for DER 
coordination: 

Reduced risks of voltage violations

Topology-aware learning 
for real-time market:

Simpler model for efficient training

Communication link
Fast meter

Scalable learning for grid 
emergency responses: 

Fast mitigations under limited data



PART I: TOPOLOGY-AWARE LEARNING 

FOR REAL-TIME MARKET
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⮚ Real-time computation of the OPF solutions by learning the I/O mapping

Input

Powerful OPF 

Solvers

Output

… …

Neural Network 

(NN)

Model

Input Output

13

ML for optimal power flow (OPF)



Existing work and our focus
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⮚ Integration of renewable, flexible resources increases the grid variability and 

motivates real-time, fast OPF via training a neural network (NN) 

▪ Identifying the active constraints (for dc-OPF) [Misra et al’19][Deka et al’19]

▪ Directly mapping the ac-OPF solutions [Guha et al’19]

▪ Warm start the search for ac feasible solution [Baker ’19] [Zamzam et al’20]

⮚ Address the uncertainty in stochastic OPF [Mezghani et al’20]

⮚ Connect to the duality analysis of convex OPF [Chen et al’20] [Singh et al’20]

Focus: Exploit the grid topology to reduce the NN model complexity



OPF for real-time market 
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⮚ Power network modeled as a graph                      with N nodes

⮚ ac-OPF for all nodal injections 

▪ Nodal input:

power limits + costs

▪ Nodal output: optimal p/q ?

▪ Fully-connected (FC)NN

FCNN layer has               parameters!



Topology dependence 
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⮚ [Owerko et al’20] uses graph learning to predict p/q

⮚ Locational marginal price (LMP) from the dual problem

▪ Strongly depends on the graph topology and congested lines

▪ ISF (injection shift factor) matrix S from graph Laplacian 

shares the same eigen-space 

as the graph Laplacian 



LMP map with locality 
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Graph NN (GNN): topology-based filtering
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⮚ Input formed by nodal features as rows

➢ GNN layer 𝑙 with learnable parameters

▪ Topology-based graph filter 

▪ Feature filters             explore higher-dim. mapping

If lines are sparse                           

and let                            , then 

the number of parameters for 

each GNN layer is

Compared to FCNN
Hamilton, William L. "Graph representation learning." 2020. 

https://www.cs.mcgill.ca/~wlh/grl_book/

https://www.cs.mcgill.ca/~wlh/grl_book/


GNN for predicting LMPs
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⮚ LMP prediction [Ji et al’16, Geng et al’16]

⮚ GNN-based LMP can determine the optimal p/f

➢ Feasibility-regularization (FR) to reduce line flow violations

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Graph Neural Networks for Learning Real-Time Prices in Electricity Market."

ICML Workshop on Tackling Climate Change with Machine Learning, 2021. https://arxiv.org/abs/2106.10529

https://arxiv.org/abs/2106.10529


LMP prediction results
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⮚ 118-bus + ac-opf and 2382-bus + dc-opf; GNN/FCNN + feasibility regularization (FR)

⮚ Metrics: LMP and 𝑝𝑔 prediction error; line flow limit violation rate



GNN for classifying congested lines
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⮚ Classifying the status for the top 10 congested lines with cross-entropy loss

⮚ Metrics: recall (true positive rate), F1 score

⮚ GNN better in performance scaling for large systems, thanks to reduced 

complexity

118ac Recall F1 score 2383dc Recall F1 score

GNN 98.40% 96.10% GNN 90.00% 81.40%

FCNN 97.70% 94.60% FCNN 87.30% 78.30%



Topology adaptivity
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⮚ In addition to reduced complexity, GNN-based 

prediction can easily adapt to varying grid 

topology 

⮚ Pre-trained GNN for a nominal topology can 

warm-start the learning for randomly selected 

two-line outages

⮚ Re-trained process takes only 3-5 epochs to 

converge to good prediction

⮚ Currently pursuing to formally analyze this 

transfer capability



PART II: RISK-AWARE LEARNING FOR 

VOLTAGE SAFETY IN DISTRIBUTION GRIDS
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ML for distributed energy resources (DERs)

• Rising DERs at grid edge motivate scalable & efficient coordination to 

support the operations of connected distribution grids

• Lack of frequent, real-time communications

• Distribution control center or DMS may broadcast messages to the full system

24

Distribution Substation

Fast meter/D-PMU
(sub-second) 

Slow meter
(15 minutes – 1 hour) 

Liu, Hao Jan, Wei Shi, and Hao Zhu. "Hybrid voltage control in distribution networks under limited communication rates."

IEEE Transactions on Smart Grid 10.3 (2018): 2416-2427.

Molzahn, Daniel K., et al. "A survey of distributed optimization and control algorithms for electric power 

systems." IEEE Transactions on Smart Grid 8.6 (2017): 2941-2962.



Existing work and our focus
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⮚ Scalable DER operations as a special instance of OPF

▪ Kernel SVM learning [Karagiannopoulos et al’19],[Jalali et al’20]

▪ DNNs for ac-/dc-OPF [see Part I]

▪ Reinforcement learning (RL) [Yang et al’20, Wang et al’19] 

⮚ Enforcing network constraints is challenging

▪ Heuristic projection or penalizing the violations

Focus: Address the statistical risks to ensure safe operational grid limits



Optimal DER coordination
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⮚ DERs for voltage regulation and power loss reduction

▪ :  available reactive power

▪ :  network matrix

▪ :  operating condition

▪ :  voltage limits

➢ (Multi-phase) linearized dist. flow (LDF) model leads to a convex QP

➢ But a centralized solution requires high communication rates

Central 

Controller 𝐲𝑛

𝐳𝑛

Fast meter



ML for DER optimization
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⮚ Similar to OPF, want to predict 

➢ Learn a scalable NN model, one for each node 𝑛

▪ :  nodal weights to be learned

➢ Similarly, we can use GNN architecture such that all nodes use the same filter

Communication link
Fast meter

➢ Average loss function: mean-square error (MSE)

with



Risk-aware learning
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➢ Consider the conditional value-at-risk (CVaR) for predicting z

for a given significance level 

𝐓𝐨𝐩 𝜶K

▪ 𝜆: regularization hyperparameter

▪ CVaR turns out very useful for voltage constraints

Shanny Lin, Shaohui Liu, and Hao Zhu. "Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids," Power Systems 

Computation Conference (PSCC) 2022 (accepted), https://arxiv.org/abs/2110.01490

https://arxiv.org/abs/2110.01490


➢ A key computation challenge is learning efficiency with worst-case samples

▪ Modern sampling-based ML tools reduces the accuracy of gradient computation

Accelerating CVaR learning
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⮚ CVaR loss is known to preserve convexity of loss function 

▪ But the NN model is typically nonconvex; recent extension [Kalogerias’21]

➢ We developed a straightforward mini-batch selection algorithm (Alg. 1 later) 

that only uses those of sufficient risk value for computing gradient



Risk of predicting 𝐪 decisions
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➢ IEEE 123-bus system with six DER nodes of flexible 𝐪 output

▪ All DERs use limited power information to learn the optimal decision

➢ Error performance very similar due to the high prediction accuracy

➢ Yet, training time accelerated by CVaR and the proposed selection algorithm



Risk of voltage violation
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➢ Further incorporating the CVaR of voltage prediction

➢ Reduced max voltage deviation (worst-case) -> higher operational safety

➢ Computational efficiency improved by the proposed selection algorithm



PART III: SCALABLE LEARNING OF 

EMERGENCY RESPONSES FOR RESILIENCE
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Grid emergency responses

• Grid resilience challenged by emerging 

types of variable energy resources 

(VERs), and increasingly by extreme 

weather events

• It imperative to design the grid operations 

with effective emergency responses

• Load shedding 

• Topology optimization 

• ...

• How to attain the decisions in a scalable 

and safe manner?
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Centralized optimal load shedding (OLS)
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⮚ Load shedding determined by control center with system-wide information

⮚ AC Optimal load shedding (OLS) program cast as a special case of AC-OPF

Control 

Center

....
2 3

5 4

7

8

9

14

106 11

12 13

1

:node (bus) : failure : load shedding



ML for decentralized load shedding
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⮚ Each load learns optimal decision rule from a large of historical or synthetic scenarios

➢ Input feature:

➢ Local shedding solutions:

Yuqi Zhou, Jeehyun Park, and Hao Zhu, “Scalable Learning for Optimal Load Shedding Under Power Grid Emergency 

Operations,” PES General Meeting (PESGM) 2022 (accepted) https://arxiv.org/abs/2111.11980

https://arxiv.org/abs/2111.11980


Scalable learning of load shedding
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⮚ Offline training is 

performed for various 

contingency and load 

conditions

⮚ Load centers quickly 

make decisions during 

online phase in 

response to 

contingencies.



Prediction under single line outage
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⮚ IEEE 14-bus system; quadratic cost functions

⮚ All (𝑁 − 1) contingency scenarios, under different load conditions (1000 

samples for each scenario)



Summary
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⮚ I: Topology adaptivity and other transfer learning ideas

⮚ II: Convergence analysis and connections to safe learning

⮚ III: Generalized emergency responses and risk-awareness

Risk-aware learning for DER 
coordination: 

Reduced risks of voltage violations

Topology-aware learning 
for real-time market:

Simpler model for efficient training

Communication link
Fast meter

Scalable learning for grid 
emergency responses: 

Fast mitigations under limited data



Education resources 

39

⮚ UT grad course “Data Analytics in Power Systems,” new slides available 

https://utexas.app.box.com/v/EE394VDataInPowerSys

⮚ 2020 NSF Workshop on Forging Connections between Machine Learning, 

Data Science, & Power Systems Research  

https://sites.google.com/umn.edu/ml-ds4pes/home

⮚ DOE-funded EPRI GEAT with Data 

https://grided.epri.com/great_with_data.html

https://utexas.app.box.com/v/EE394VDataInPowerSys
https://sites.google.com/umn.edu/ml-ds4pes/home
https://grided.epri.com/great_with_data.html


Hao Zhu
haozhu@utexas.edu

http://sites.utexas.edu/haozhu/
@HaoZhu6

Thank you!

Learning and Optimization 
for Smarter Electricity Infrastructure

Learning for grid resilience

Learning for dynamic resources 

Learning for power electronics based resources

....

mailto:haozhu@utexas.edu
http://sites.utexas.edu/haozhu/

