

Power Engineering Research Center (PSERC) Webinar October 12, 2022

Cybersecurity for DER Networks: Situational Awareness and Attack Surface Reduction

Manimaran Govindarasu

Dept. of Electrical and Computer Engineering Iowa State University

> Collaborators: **Moataz Abdelkhalek Gelli Ravikumar** Iowa State University

Outline of the Talk

- DER Cyber Attack Surface
- Cybersecurity Situational Awareness
 - ML-based Anomaly Detection
 - ML-based Alert Correlation
 - Real-time Visualization
- Attack Surface Reduction using MTD
- Conclusions

Distributed Energy Resources (DER)

- DER: Solar PVs, wind farms, energy storage, electric vehicles (EVs)
- DER deployment is continously growing ...
- Forms microgrids and integration into distribution grid
- Real-time morning and control with latency constraints
- Decentralized monitoring and control architecture
- Distributed communication architecture
- **IoT:** Utilizes public networks & cloud infrastructures
- Edge devices/controllers have limited capabilities
- Large attack surface and is growing ...

vesterday production market centralized, mostly national decentralized, ignoring boundaries transmission based on large power lines and pipelines including small-scale transmission and regiona supply compensation distribution consumer passive, only payin ctive, participating in the system

DER Cybersecurity Threats

Ref: Qi, Junjian, et al. "Cybersecurity for distributed energy resources and smart inverters." IET Cyber-Physical Systems: Theory & Applications 1.1 (2016): 28-39.

Real Cyber incidents on Industrial Control Systems (ICS)

DER Networks Attack Surface

Modbus DER Communication Protocol

- One of the most common automation communication protocols for DER devices.
 - Serial, over Ethernet, over TCP/IP
- Client/Server Communication model.
- Server initiate queries, Clients send responses of requested data or apply action.
- Susceptible to various IT-OT attacks -- originally clear text protocol
- No mutual authentication and Access Controls

Decimal	Hexadecimal	Description
01	0x01	Read Coil Status
02	0x02	Read Input Status
03	0x03	Read Holding Restiers
04	0x04	Read Internal Registers
05	0x05	Force Single Coil
06	0x06	Preset Single Register
15	0x0F	Force Multiple Coils
16	0x10	Preset Multiple Registers
22	0x16	Masked Write Register

Reference: [6] Gelli Ravikumar, Abhinav Singh, Jeyanth Rajan Babu, Abdelkhalek Moataz A, and Manimaran Govindarasu. D-ids for cyber-physical der modbus system architecture.

DNP3 DER Communication Protocol

- Most used Open-source communications protocol in SCADA and DER systems in the US.
 - Serial, over Ethernet, over TCP/IP
- Control larger, more complex processes
- Detect and correct problems quickly
- Eliminate bottlenecks and inefficiencies
- Susceptible to various IT-OT attacks -- originally clear text protocol
- No mutual authentication and Access Controls

Code	Function
00	Confirm
01	Read
02	Write
03	Select
04	Operate
05	Dir operate
06	Dir operate-No resp
07	Freeze
08	Freeze-No resp
09	Freeze clear
А	Freeze clear-No resp
В	Freeze at time
с	Freeze at time-No resp
D	Cold restart
E	Warm restart
F	Initialize data

Code	Function
10	Initialize application
11	Start application
12	Stop application
13	Save configuration
14	Enable unsolicited
15	Disable unsolicited
16	Assign class
17	Delay measurement
18	Record current time
19	Open file
1A	Close file
1B	Delete file
1C	Ger file information
1D	Authenticate file
1E	Abort file

DER Communication Protocols - Cybersecurity features

	Ducto coluino C1050	Protocol: IEEE 2030.5		Protocol: Modbus
DER Protocol	Protocol: IEC 61850	Information Model:	Protocol: IEEE 1815 Information Model:	Information Model:
Cyber Security	IEC 61850-90-7	CSIP	DNP3 Application Note	SunSpec or MESA Models
Features	Security Requirements:	Security Requirements:	Security Requirements:	Security Requirements:
	IEC 62351 Series	IEEE 2030.5 + CSIP	IEEE 1815	None
Devices Support	DER, Power Systems Devices	DER, Smart Grid devices	Utility, Grid Devices	Utility, Grid, ICS devices
Encryption Capability	Non-Native	Yes	BITW	BITW
Encryption Required	No	Yes	No	No
Supported Transport Protocols	N/A	TCP or UDP	Serial or TCP	Serial or TCP
Supported Networks	N/A	IPv4, IPv6	IPv4	IPv4, IPv6
Authentication Support	Non-Native	Yes	Optional	Non-Native
Type of Communication Protocol	IEC 61850-90-7 contains functions for power converter-based DER systems	Communication protocol for device integration with the Smart Grid	Communication protocol for real-time monitoring and control	Communication protocol for real-time monitoring and control
Type of Information Model	IEC 61850-90-7	CSIP	DNP3 Application Note	SunSpec and MESA are information models for Modbus
Type of Security Requirements	IEC 62351 Series	IEEE 2030.5 + CSIP	IEEE 1815	There are no security requirements for Modbus communications
Type of Data Transmitted	DER settings, control modes, and measurements	DER measurement and control data	Data objects with defined attributes and priority levels	DER measurement and control data
Aggregation Support	Utility or aggregators can collect data	Yes	Yes	Yes

Source: Lai, Christine et.al, "Cyber Security Primer for DER Vendors, Aggregators, and Grid Operators," Sandia National Laboratories, Tech. Report, 2017.

A Cybersecurity Lifecycle Model

A. Ashok, M. Govindarasu, and J. Wang, "Attack-resilient control algorithms" for WAMPAC of the power grid", Proceedings of the IEEE, 2017.

Research Objectives

- 1. Develop Real-Time Cybersecurity Situational Awarness Architecture and Algorithms for DER Networks
 - ML-based anomaly detection models (ML-ADS) tailored for DER communication networks, with a focus on Modbus and DNP3 protocols.
 - The models should accurately identify intrusions and anomalies from normal events.
 - The models should be able to detect both known and unknown attacks with high detection accuracy while satisfying real-time latency constraints.
- 2. Develop Attack Surface Reduction Techniques for DER networks
 - Network-based solution complementing end-system solutions
 - Effiectiveness and feasiblility for real-time implmentation

Proposed ML-based Anomaly Detection for DER

Name	Date	Realistic Normal/Attack Traffic	Labeled Data	Attack Types	CPS Traffic	Full Packet Capture
KDD CUP 99	1999	Yes	Yes	Yes	No	No
DARPA'2000	2000	Yes	Yes	Yes	No	Yes
NSL - KDD	2009	Yes	Yes	Yes	No	Yes
ISCXIDS2012	2012	Yes	Yes	Yes	No	Yes
CIC-IDS2017	2017	Yes	Yes	Yes	No	Yes
CSE-CIC-IDS2018	2018	Yes	Yes	Yes	No	Yes
Bot-loT	2018	Yes	Yes	Yes	Yes	Yes
WUSTLIIOT2018	2018	No	Yes	Yes	Yes	No
Electra	2019	No	Yes	Yes	Yes	No
loT-23	2020	Yes	Yes	Yes	Yes	Yes

Source: CSE-CIC-IDS2018 Dataset

Data Augmentation

- No DER specific Datasets available
- Inaccurate training will result in high false-positive and false-negative rates.
- Generated realistic DER traffic and Attack using ISU CPS-DER Security Testbed
 - various DER stealthy attacks such as port scanning,
 - DoS attacks, Modbus stealthy injection attacks
 - DNP3 stealthy injection attacks, etc.
- Denial of Service attacks

 $P_{depletion}(t) = 1 - (1 - P_B(t))(1 - P_M(t))$

• Sample Pseudo Modbus Data-integrity Attack

Category	Protocol	Attribute	Description	Туре	Impact
Reconnaissance	ICMP		Ping on Modbus Slave & DER Plant Controller	Not Stealthy	Low
Reconnaissance	TCP		Scan - IPs, Ports and System details	Not Stealthy	Low
DOS / DDOS	TCP	SYN flag	IP Spoofing SYN packet flooding	Stealthy	High
00370003	TCP	TCP flood	IP Spoofing packet flooding	Stealthy	High
Spoofing	ARP		ARP Spoofing to stop write request	Not Stealthy	High
File Operation	FTP		Remote shell on system	Not Stealthy	High
	TCP / ICMP		Non-Modbus traffic	Stealthy / Not Stealthy	Medium
DOS / DDOS	Modbus	Illegal address-Write	Write req. on Modbus coil	Stealthy	High
	DNP3	Illegal data point write	Write data point on DNP3 register	Stealthy	High
1	Modbus	Read	Coil	Stealthy	Low
	Modbus	Read	Holding register	Stealthy	Low
	Modbus	Read	Discrete input	Stealthy	Low
Modbus Function Code	Modbus	Read	Input register	Stealthy	Low
	Modbus	Write	Coil	Stealthy	High
	Modbus	Write	Holding register	Stealthy	High
	Modbus	Write / Read	Holding register check data	Stealthy	High
	DNP3	Error	internal indications flags (IIN)	Stealthy	Low
	DNP3	Download	File (config)	Stealthy	Medium
DNP3 Function Codes	DNP3	Upload	File (malicious)	Stealthy	High
	DNP3	Control	Operate, Warm restart, Cold restart, etc.	Stealthy	High
	DNP3	Data Point Write	voltage, current or frequency	Stealthy	High

Attack Categorization and Balancing

Traffic Source	Attack Type	Attack Category
Original Dataset	DDoS attack-LOIC-UDP	DOS
Original Dataset	DoS attacks-SlowHTTPTest	DOS
Original Dataset	DoS attacks-Slowloris	DOS
Original Dataset	DoS attacks-Hulk	DOS
Original Dataset	DoS attacks-GoldenEye	DOS
Original Dataset	DDoS attack-HOIC	DOS
Original Dataset	DDoS attacks-LOIC-HTTP	DOS
Original Dataset	SSH-Bruteforce	RA
Original Dataset	FTP-Bruteforce	RA
Original Dataset	Brute Force-Web	RA
Original Dataset	Brute Force-XSS	RA
Original Dataset	SQL Injection	RT
Original Dataset	Infiltration	Scanning
Original Dataset	Bot	RA
Augmented DER Traffic	DER Reconnaissance	Scanning
Augmented DER Traffic	DER Bruteforce	RA
Augmented DER Traffic	DER Traffic Flooding	DOS
Augmented DER Traffic	DER Remote Exploitation	RT
Augmented DER Traffic	DER Stealth Attacks	DER Stealth

Number of Attack Flows

Attack Catgory

Feature Extraction and Selection - Modbus

- Statistical Feature Extraction
 - \circ 84 OT/IT based features
- Dimensionality Feature Reduction
 - Pearson's and Chi-Squared correlation
 - 42 selected features

IT Features	OT Features	
FlowID	DER Flow Duration	
Source IP	Length of DER Protocol Payload	
Destination IP	Number of DER Protocol Requests	
Source Port	DER Protocol Payload Values Mean	
Destination Port	DER Protocol Payload Values Standard Deviation	
Protocol	Mean Total Flow Time	

Divided Datasets into 70% Training and Validation, and 30% Testing (containing unknown attacks patterns)

Feature Extraction and Selection – DNP3

- Statistical Feature Extraction
 - 92 OT/IT based features
- Dimensionality Feature Reduction
 - Principal Component Analysis (PCA), Pearson's

and Chi-Squared correlation

• 47 selected features

IT Features	OT Features		
Flow Bytes/s	DER Flow Duration		
Src & Dst IP	DER DNP3 Payload Length		
Src & Dst Port	DER DNP3 Requests/s		
Traffic Set Flags	DER DNP3 Payload Values Mean & Std Dev		
Packet Length	DER DNP3 Payload Function Codes		
Protocol	DER DNP3 IIN Flags		

ML Algorithm	NB	DT	RF	SVM	LR	GB	ANN
Training Accuracy	66.07	99.52	98.49	82.61	82.9	99.43	98.67
Testing Accuracy	66.48	99.24	98.03	83.27	83.39	99.15	98.43
Training Latency (µs)	4.91	26.13	220.36	687.6	251.87	2166.65	4107.54
Testing Latency (µs)	3.58	1.9	55.49	634.29	0.52	9.91	75.31

Divided Datasets into 70% Training and Validation, and 30% Testing (containing unknown attacks patterns)

Alert Correltation Architecture

- One of the main drawbacks for distributed ADS systems is:
 - Low-level representation of attacks.
 - High false-positives
 - Large number of alerts
- Alert analysis is a challenging task
- Alert Correlation:
 - Transforms raw alerts into a more meaningful wider insight of the attack sc
 - Cyber situational Awareness into the DER incidents
 - Reduce total volume of alerts
 - Reduce false-positive alerts

Proposed Alert Correlation framework for DER Networks

Distributed Correlation Sensors

Alert Confidence (Verification)

Similarity-based Correlation

• Attack Thread Reconstruction and Attack Session Reconstruction

Time	Source (Attacker)	Destination (EID)	ADS Alert Signature
06/17/2020 00:45	10.0.0.100	10.0.0.2	А
06/17/2020 00:50	10.0.0.100	10.0.0.3	В
06/17/2020 00:55	10.0.0.100	10.0.0.4	С
06/17/2020 02:00	10.0.0.2	10.0.0.5	D
06/17/2020 02:05	10.0.0.3	10.0.0.5	D
06/17/2020 02:10	10.0.0.4	10.0.0.5	D

ML Statistical-based Correlation Feature Extraction

Classification Feature	Attack Session 1	Attack Session 2	Attack Session 3
Incident Type	Distributed Denial of Service Attack	Worm Attack	Remote Hacking Attack
Attack Technique Rate of Change	Low	Low / None	High
Source IP Rate of Change	High	Low / None	Low
Dest. IP Rate of Change	Low / None	High	Low
Dest. Port Rate of Change	Unknown	Low / None	Medium
Time Rate of Alerts	Very High	Unknown	Unknown
Type of Events	DoS	Scan Remote-Access	Reconnaissance Scan Remote-Access Privilege Level

ML Statistical-based Alert Correlation - Correlation Trees

2-Tier Testbed Architecture for DER Situational Awareness

HIL 2-tire DER Testbed Implementation for cyber situational awareness

Real-Time Visualization

👬 Apps SPDC - Graph N	leas		III Read	ding list	😚 Elastic 🔿	Q 5	Search Elastic		o 🔊 🕕
portainer.io	#	eth0	RX bytes:59669910 (59.6 MB) TX bytes:47022584 (47.0 MB) Link encap:Ethernet HWaddr a8:74:1d:04:0d:29 inet add	• *	🗮 🖸 Dashb	ooard / Overview		63	
Home ₩ LOCAL	^		inet6 ad r: fe80::aa7 UP BROADCAST KUNNING MULTICAST MTU:1500 Metric:1		₿~ *		ucene 💿 🗸 Last 20 days		tes C <u>Refresh</u>
Dashboard	20		RX packets:230294357 errors:714457 dropped:1 overruns:0 frame:0 TX packets:9415914 errors:1 dropped:0 overruns:0 carrier:0	1.1	🗐 – + Add filter				
App Templates	-		collisions:0 txqueuelen:1000						
Stacks	=		RX bytes:603359939 (603.3 MB) TX bytes:1165117894 (1.1 GB) Interrupt:29 Base address:0xe000		Navigation	Total Number of Logs	Total Log Count Over Time		
Containers	-				Hama				Count
Images		10	Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0		Home Help		8,000		
Networks	at a		inet6 addr: ::1/128 Scope:Host		Squert		- 000,0 ml		
Volumes	&		UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:2663819 errors:0 dropped:0 overruns:0 frame:0		Logout	14.664	8 4,000 -		
Events	Э		TX packets:2663819 errors:0 dropped:0 overruns:0 carrier:0		Alert Data	17,007	2,000 -	\sim	
Host			collisions:0 txqueuelen:1000 RX bytes:122602882 (122.6 MB) TX bytes:122602882 (122.6 MB)		Zeek Notices		0 2021-10-29 00:00	2021-11-07 00:00	
SETTINGS					ElastAlert		@timestam	p per 12 hours	
Extensions		veth9465	6d7 Link encap:Ethernet HWaddr 52:28:ca:6f:e5:44 inet6 addr: fe80::5028:caff:fe6f:e544/64 Scope:Link		HIDS NIDS				
Lisers			UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1	-	NIDS	All Sensors - Log Type		Devices - Count	Sensors - Count
<u></u>					Zeek Hunting	to Broad a	0 - umb		
portainer.io	#		RX bytes:14341502 (14.3 MB) TX bytes:1552100 (1.5 MB)	•	Connections DCE/RPC	Log Type(s) 🗧	Count 🕆		
		eth0	Link encep:Ethernet_Wwaddr a8:74:1d:0c:7e:36		DHCP	ossec	10,015		
Home	f î		inet add :10.1.0.149 3cast:0.0.0.0 Mask:255.255.0.0		DNP3	bro_conn	1,650		
			inet6 add	1.1	DNS	CRON	1,562		
Dashboard	2		RX packets:1853420 errors:10717 dropped:35817 overruns:0 frame:0		Files FTP	bro_weird	540		
App Templates			TX packets:280798 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000			bro_dns	202		
Stacks			RX bytes:499008692 (499.0 MB) TX bytes:62305793 (62.3 MB)		Intel	bro_ssl	198	4	2
Containers			Interrupt:29 Base address:0x8000		IRC	ntpd	118		2
Images	•	10	Link encap:Local Loopback		Kerberos Modbus	su	116		
Networks	.		inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host		MySQL				
Volumes	86		UP LOOPBACK RUNNING MTU:65536 Metric:1		NTLM	sudo	64		
Events	Э		RX packets:211069 errors:0 dropped:0 overruns:0 frame:0 TX packets:211069 errors:0 dropped:0 overruns:0 carrier:0		PE	bro_http	36		
Host			collisions:0 txqueuelen:1000		RADIUS RDP				
SETTINGS	-		RX bytes:13181674 (13.1 MB) TX bytes:13181674 (13.1 MB)		RFB	Export: Raw 📥 Formatted 📥			

Performance Evaluation – Alert Correlation for Modbus

• ML-ADS Real-Time Confusion Matrix for DER Modbus Communication

	Actual Attack (66.57%) (133805 flows)	Actual Benign (33.43%) (67179 flows)	
Predicted Attack	TP (131157 flows)	FP (566 flows) (0.28%)	Accuracy (98.40%)
Predicted Bengin	FN (2648 flows) (1.32%)	TN (66613 flows)	Precision (99.57%)
	Recall (98.02%)	F1-Score (98.79%)	

• ML-ADS Real-Time Confusion Matrix for DER DNP3 Communication

	Actual Attack (31.6%)	Actual Benign (68.4%)	
	(104911 flows)	(227053 flows)	
Predicted Attack	TP (104373 flows)	FP (17 flows) (FPR 0.008%)	Accuracy (99.83%)
Predicted Benign	FN (538 flows) (FNR 0.51%)	TN (227036 flows)	Precision (99.84%)
	Recall (99.83%)	F1-Score (99.83%)	,

Conclusions – Cybersecurity Situational Awareness

Conclusions:

- **2-tier IoT cybersecurity situational awareness architecture** design and testbed-based implementation
- ML-based anomaly detection for DER communication protocols (Modbus, DNP3)
- ML-based alert correlation algorithms
- Demonstrated the efficacy and feasibility of the proposed IoT architecture and algorithms for

cybersecurity situational awareness – high attack detection rate, feasible latency

Future work:

- ML-based Anomaly detection and Aler Correlation for other DER protocols (e.g., IEEE 2030.5, IEC 61850)
- Attack mitigation and Resiliency algorithms for DER

Outline of the Talk

- DER Cyber Attack Surface
- Cybersecurity Situational Awareness
 - ML-based Anomaly Detection
 - ML-based Alert Correlation
- Attack Surface Reduction using SDN-enabled MTD
- Conclusions

Moving Target Defense (MTD) – Attack Surface Reduction

 Introduce controlled "uncertainty" in system operation without any adverse effect → confuse the adversary

Examples:

- Randomize network addresses
- Randomize network paths
- Randomize measurements
 & application behavior

Software-defined Networking (SDN)

- **SDN** is a **programmable networking** mechanism that **decouples control plane from data plane**.
- SDN allow for dynamic DER communication programmability for more reliable, efficient, and scalable operation.
- SDN can enable the implementation of MTD in the DER networks.
- SDN-enabled MTD combines the advantages of both the dynamic programmability of SDN and the randomness of MTD for cyber attack prevention and mitigation in DER environment.

- Develop a proactive security defense mechanism for DER network using SDNenabled MTD technique.
- 2. Show the practicality and efficiency of the proposed system on a close to realworld Testbed implementation.
- 3. The proposed mechanism should be able to proactively reduce the effect of DoS attacks on the DER network communication while maintaining normal real-time operation.

Traditional DER Communication Architecture (WAN)

SDN-enabled DER Communication Architecture (SD-WAN)

Case Study: SD-WAN MTD for DER Network

MTD Path Switching using SDN:

- Choose Randomly between communication channels
- Automated Switching between 3 SDN routers.

Defender Requirement:

- Having Redundancy Path.
- Randomness.
- MTD Switching Frequency.

Attacker Assumptions:

• DoS attack on only one of the communication channels.

Ref: [1] Moataz Abdelkhalek, Burhan Hyder, Manimaran Govindarasu, and Craig G Rieger, "Moving Target Defense Routing for SDN-enabled Smart Grid", IEEE Intl. Conf. Cyber Security & Resilience (CSR), 2022.

Real-Time Power System Simulator (OPAL-RT)

SDN-MTD Experimental Evaluation

- Static Routing (Traditional no MTD)
- MTD Channel Hopping (Fast vs. Slow) = 9 MTD intervals
- Attack Intensity (High vs. Low) = 5 attacks
 - hping3 (DoS Tool)
- 3 SDN-enabled router
- Total Test Cases = MTD Frequency x Attack Intensity x SDN Channels = **135**
- DER Packet Drop Rate
- DER Real-Time Latency

							•	-
Static	0.1s	0.3s	0.5s	1s	3s	5s	10s	15s

Increase MTD Channel Switching Interval

Attack Percentage	Attack Volume (packet/sec)					
0% (No Attack)	0					
25%	250					
50%	500					
75%	750					
100% (Full DoS)	1000					

Performance Evaluation (DER Packet Drop Rate vs. Attack)

	MTD Switching Frequency								
Attack Volume	Static	0.1s	0.3s	0.5s	1s	3s	5s	10s	15s
0%	0.00%	0.33%	0.33%	0.00%	0.00%	0.17%	0.00%	0.00%	0.00%
25%	25.00%	12.67%	12.17%	8.83%	8.33%	8.17%	7.67%	8.33%	11.33%
50%	50.00%	27.67%	23.33%	16.83%	16.50%	16.17%	15.83%	16.67%	24.33%
75%	75.00%	41.67%	34.50%	26.83%	25.17%	26.33%	24.00%	25.00%	37.33%
100%	100.00%	54.50%	45.17%	36.33%	33.83%	34.50%	33.83%	35.00%	49.50%

	MTD Switching Frequency								
Attack Volume	Static	0.1s	0.3s	0.5s	1s	3s	5s	10s	15s
0%	0.00%	0.33%	0.33%	0.00%	0.00%	0.17%	0.00%	0.00%	0.00%
25%	25.00%	12.67%	12.17%	8.83%	8.33%	8.17%	7.67%	8.33%	11.33%
50%	50.00%	27.67%	23.33%	16.83%	16.50%	16.17%	15.83%	16.67%	24.33%
75%	75.00%	41.67%	34.50%	26.83%	25.17%	26.33%	24.00%	25.00%	37.33%
100%	100.00%	54.50%	45.17%	36.33%	33.83%	34.50%	33.83%	35.00%	49.50%

- 0% - 25% - 50% - 75% - 100%

Performance Evaluation (DER Latency vs. Attack & MTD Freq)

	MTD Switching Frequency								
Attack Volume	Static	0.1s	0.3s	0.5s	1s	3s	5s	10s	15s
0%	0.1237	0.111	0.1227	0.1207	0.1237	0.117	0.1159	0.1165	0.1126
25%	0.1272	0.1252	0.1247	0.1227	0.1272	0.1254	0.1169	0.1258	0.1231
50%	0.1374	0.1318	0.1216	0.1374	0.1237	0.1208	0.1338	0.1184	0.1245
75%	0.1381	0.1315	0.1301	0.1197	0.1232	0.1325	0.1346	0.1227	0.1381
100%	0.1462	0.1225	0.1287	0.1309	0.1242	0.1325	0.1312	0.1394	0.1462

The proposed model could maintain real-time operation (0.13s) even under full 100% DoS on the communication network.

Conclusions - SDN-MTD

- Proposed an SDN-enabled MTD solution for attack surface reduction
- Implemented and evaluated it using HIL Testbed
- SDN-enabled MTD show lower packet drop percentages with feasible latency

Future Work:

- Scalability of the SDN-enabled MTD for complex networks
- Orchestration between STD-MTD and other defense mechanisms (e.g., ADS)

CONCLUSIONS

- DER deployment is continuously growing ...
- Also, Attack Surface is increasing ...
- Attack frequency and stealthy-ness have been increasing ...
- Cybersecurity Life-cycle solution is important
 - Attack Deterrence prevention, detection, mitigation, resilience, and forensics
- Presented two case studies
 - Attack Detection Cybersecurity Situational Awareness
 - Attack Prevention Attack surface reduction using SDN-enabled MTD
- A lot more R&D and deployment needs to be done
 - Attack prevention, mitigation, resilience
 - Testbeds, deployments, demonstrations, datasets, technology transfer, etc.

Publications

• Relevant Publications:

- M. Abdelkhalek, and M. Govindarasu, "ML-based Alert Correlation Algorithms For DER Cyber Situational Awareness," (under submission).
- M. Abdelkhalek, and M. Govindarasu, "ML-based Anomaly Detection System for DER DNP3 Communication in Smart Grid," May 2022, 2022 IEEE International Conference on Cyber Security and Resilience (IEEE CSR 2022).
- M. Abdelkhalek, B. Hyder, M. Govindarasu, and C. G. Rieger, "Moving Target Defense Routing for SDNenabled Smart Grid," May 2022, 2022 IEEE International Conference on Cyber Security and Resilience (IEEE CSR 2022).
- M. Abdelkhalek, G. Ravikumar and M. Govindarasu, "ML-based Anomaly Detection System for DER Communication in Smart Grid," Aug 2021, Innovative Smart Grid Technologies (ISGT 2022).
- G. Ravikumar, A. Singh, J. R. Babu, Moataz A. and M. Govindarasu, "D-IDS for Cyber-Physical DER Modbus System - Architecture, Modeling, Testbed-based Evaluation," 2020 Resilience Week (RWS), August 2020, pp. 153-159, doi: 10.1109/RWS50334.2020.9241259.

• Industry Outreach:

- App Development & Dissemination -- "IADS Application for EID devices" development, optimization and functional testing on Docker Containers and published on DockerHub and (Phoenix Contact AppStore "deployment undersay") for technology transfer and potential impacts
- DER IT/OT datasets for cybersecurity experimentation Dissemination via public portals (under development)
- Technical presentation on IDS implementation into EID and the overall 2-tier IADS architecture to Phoenix Contact for knowledge dissemination and potential technology licensing opportunities. (Presented)

THANK YOU !

- Acknowledgements:
 Collaborators:
 - Moataz Abdelkhalek (ISU, Cisco (now))
 - Gelli Ravikumar (ISU)
 - Srini Devarajan & Kunal Shah (Poundra)
 - Raja Ayyanar & S. Thakar (Arizona State University)
 - Burhan Hyder (ISU, PNNL (now))

Funding Support:

U.S. Department of Energy (DOE)

Solar Energy Technology Office (SETO) Award # DE-EE0008773

Project team members:

- R. Ayyanar V. Vittal, Q. Lei, Y. Weng, M. Govindarasu,
- D. Srinivasan, B. Yang, R. Yang, K. Duwadi, G. Ravikumar,
- P. Chongfuangprinya, Y. Ye, K. Shah, S. Thakar, N. Korada, Y. Si,
- M. Sondharangalla, J. Wu, J. Yuan, D. Moldovan, A. Moataz,
- D. Haughton, C. Rojas

Thank you!

Questions?

Contact: Manimaran Govindarasu

(gmani@iastate.edu)