
Embracing Nonconvexity in Power 
System Optimization: 

Are Local Minima Really So Bad?

Richard Y. Zhang
Univ. of Illinois at Urbana-Champaign

(ryz@illinois.edu)

PSERC Webinar
February 16, 2021

1



2

Optimization View of
Power System Planning & Operations

In practice: No fast & reliable solution.

Large-scale system 
Safety-critical decisions

Short span of time

In principle: Mathematical optimization

Solution
Quality

Robustness
Solution

Speed

Forces 
Trade-off



• Absolute improvements by giving up on generality.
• Rigorous notions of structure à Provable guarantees.
• Focus on structure for fresh ideas & broader impact.

3

Our Approach: 
Structure-Specific Techniques

Linear 
approx KKT

MILP

SDP

Quality
Robustness

Speed

General-
purpose
techniques

Structure-
specific
techniques

Provable improvement Machine Learning

Control 
theory

Transportation



Convex: Cut boundary at most twice 4

Fundamental Barrier: Nonconvexity

Cost



Getting stuck at local min or infeasibility
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GlobalLocal

Infeasible

Large-scale algorithms are inherently greedy

Cost
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All convex problems are alike; 
each nonconvex problem

is nonconvex in its own way.

One-size-fits-all is great for convex; 
very suspect for nonconvex.



Power Systems: Quadratic Nonconvexity 
between Power & Voltage
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min gen-cost s.t power demand limits

Early 2010s.
Quadratic form 
Convex relaxation

Mid-late 2010s. 
Specific Ak matrices
Theoretical guarantees

“Power is proportional 
to voltage squared”
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Globally 
optimal

If Ak and bk satisfy certain properties

Today: A Surprising Convex-like Behavior

Large 
gradient

Negative 
curvature

No spurious local minima guarantees: 
• Local optimization yields global optimality
• Nonconvexity is essentially benign



• Convex relaxation for Optimal Power Flow
• Embracing local minima in State Estimation
• Concluding remarks

9

Outline

Globally 
optimal

Large 
gradient

Negative 
curvature



Optimal Power Flow on the Electric Grid
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minimize cost of electricity over generator dispatch
subject to physics of electricity

reliability & security constraints



• Speed: Very fast and often works very well.
• Quality & robustness: No guarantees.
• Nonconvexity: Can give very bad or physically 

impossible solutions. 11

Since 1960s: Linearization, Local Optim.

Cost
“A one percent improvement 
saves $1 billion.”

-- Richard O’Neill (FERC)
Elbert, Mittelmann, “Analysis 
of GO Competition 
Challenge 1 Final Event 
Problem Difficulty” (2020)



Early 2010s: Convex relaxation
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Cost

Extract globally 
optimal solution

Convex problem gives provable lower-bound

“A one percent improvement 
saves $1 billion.”

-- Richard O’Neill (FERC)
Elbert, Mittelmann, “Analysis 
of GO Competition 
Challenge 1 Final Event 
Problem Difficulty” (2020)
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Global

Cost

Bound

Candidates

99%cost of global
cost of candidate

≥

(Guaranteed near-global)

Combining the two approaches



• Issue of nonconvexity (Momoh 1997; Hiskens & Davy 2001)

• SDP relaxation (Jabr 2006; Bai et al. 2008) 

• Global guarantees (Lavaei & Low 2012; Sojoudi & Lavaei 2014; 
Lavaei et al. 2014; Bose et al. 2015; Madani et al. 2017)

• Chordal conversion (Jabr 2012; Molzahn et al. 2013; Bose et al. 
2014; Madani et al. 2015)

• Near-global guarantees (Madani et al. 2014)

• Convergent hierarchies (Josz et al. 2014; Josz & Molzahn 2018)
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Brief timeline on convex relaxation

Time: O(n3.5) to O(n6.5)
Memory: O(n2) to O(n4)

Worst-case Complexity

Powerful guarantees on robustness and quality, 
but very bad worst-case speed



Quadratic Memory & Cubic time
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n = 3
40x

0.1 secTime
n3

RAM
n2 1 MB

1.7 hr 

1.6 GB

64,000x

1,600x 625x

15,625x

25x

3.2 years

1 TB

0.001 sec 1 min 11.5 days

n = 120
academic test case

n = 3,000
real-world

1

2 3

64,000x 15,625x



SD
LA

LV

Reno

SF

Underlying tree-like graph structure:
Decomposition approach
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Expansions rare, slow, and expensive. Upgrades faster and cheaper.

Rigorous notions: treewidth; tree decompositions;
partial separability.
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Big matrix variable
n2 elements

Small matrix variables
(1+tw)2 n elements

chordal 
conversion

Need to enforce 
overlap constraint

(1+tw)2 n
new constraints

Partial separability (Griewank & Toit 1982; Sun et al 2014)

Overlap constraints always partially separable.

If original constraints partially separable, then 
(1+tw)6 n time per IPM iteration via dynamic prog.

Zhang & Lavaei, Mathematical Programming (2020)



Dynamic programming inside an IPM
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minimize cost of electricity over generator dispatch
subject to physics of electricity

reliability & security constraints

Time: O(n1.5)
Memory: O(n)

Worst-case
Time: O(n)
Memory: O(n)

Empirical

Dualized Clique Tree Conversion 
with Auxillary Variables

Parameterized by how “tree-like” the network is.
Zhang & Lavaei, Mathematical Programming (2020)



In Practice: European Power System Model
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n = 13,659
Parameters Security Constraints

m = 40,975

Source: Cédric Josz, Stéphane Fliscounakis, Jean Maeght, Patrick 
Panciatici (2016)

< 3 minutes on a laptop.
> 99% globally optimal

Zhang & Lavaei, Mathematical Programming (2020)



• All top scorers used local optimization. 
• “Only provide locally optimality, but seems to be very 

near globally optimal in practice” 
• Similar trends in ML, X-ray imaging. 
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Local Optimization in ARPA-e GO

Coffrin, “ARPA-e Grid Competition: SCOPF Overview” (2019)

n = 30,000
Parameters Security Constraints

m = 300,000,000

< 10 minutes> 99.7% (??) globally optimal

Elbert, Mittelmann, “Analysis of GO Competition Challenge 1 Final Event Problem Difficulty” (2020)



• Convex relaxation for Optimal Power Flow
• Embracing local minima in State Estimation
• Concluding remarks
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Outline

Globally 
optimal

Large 
gradient

Negative 
curvature



Estimate all voltage phasors 
using incomplete voltage magnitudes 

and power measurements.

Voltage 
phase angles

Voltage 
magnitudes

Power 
injections

Power 
flows

Power System State Estimation



Toronto

New York

The August 14th, 2003 Northeast Blackout

Want guarantees on state estimation

“MISO’s state estimator was faulty for most 
of the period between 12:15 & 15:34 EDT.”

--US-Canada Power System Outage Task Force (2004)
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Why study state estimation?

min gen-cost s.t power demand limits
Optimal power flow

State estimation

3. State estimation successfully solved using 
local optimization since 1970s

1. No constraints

2. Same math problem 
in ML / Imaging



Risk of plausible but fictitious 
estimations: A Two-Bus Example
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G
b2 = P2
b3 = Q2

b1 = |V1|2b4 = P1

One redundant
measurement

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2019)

Three “Power Flow” 
measurements



Correct
Estimate

Spurious
Estimate

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2019)

Bus 2 magnitude

Bus 2 
angle

Existence of bad local minima



Indeed, we find four critical points, only one of which is the correct estimate

Global 
minim.

Local 
minim.

Local 
maxim.

Saddle 
point

Both 
estimates are 
plausible!

Two plausible but very different estimates

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2019)



Indeed, we find four critical points, only one of which is the correct estimate

Correct
Estimate

Spurious
Estimate

How well do the two estimates match our measurements?

Perfect match.

Global 
minim.

Local 
minim.

Local 
maxim.

Saddle 
point

Measurement error? 
Bad data?

Confusion with bad data or error

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2019)



Intuition: HV / LV Solutions to Power Flow
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Convergence to bad local minima
Varying quality of the initial guess
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True state of 
the system
(Global min)

Good initial guess
(Warm start) Bad initial guess

(Random start)

Re{v1}

Im{v1}

Spurious state
(Local min)

Expect a bad initial guess to get stuck 
at a spurious local min



Experiment results: Bad local minima 
eliminated by redundant measurements

Success rate over 100 trials
IEEE 39-bus system 100%

recovery

0%
recovery

warm start random start

No 
redund.
meas.

All 
redund.
meas

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2019)

Is this guaranteed? 
ratio

meas
to 

dofs

ratio randomness
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Globally optimal

If A1, ..., Am satisfy δ-RIP (Recht, Fazel, Parrilo 2010) 

State estimation just
the rank r = 1 case

and δ < 1/5, then

Bhojanapalli, Neyshabur, Srebro, NeurIPS (2016)
Ge, Lee, Ma, NeurIPS (2016)

Prior results – No Spurious Local Minima

Can the 1/5 be improved? 
(Bhojanapalli et al. 2016) (Ge et al. 2017) (Li & Tang 2017) (Zhu et al. 2017) etc.

δ ≈ 0.99 in SE !!

“Restricted Isometry Property”



Good

1/5
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???

Prior results – No Spurious Local Minima

δ
0 1

State estimation

Many 
diverse 

samples
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If δ < 1/2, then no spurious local min.

δ
0 11/2

Good Bad

If δ ≥ 1/2, many counterexamples.

Let rank r = 1.

Main result 1 – Necessary & Sufficient

First sharp characterization.
Zhang, Sojoudi, Lavaei, Journal of Machine Learning Research (2019)

Many 
diverse 

samples
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Practical implications 
for δ > 1/2 ?

100% 
success

no
spurious 
local min

spurious 
local min

> 0% 
failure

Fundamental limitations of 
structure-agnostic global guarantees

Zhang, Josz, Sojoudi, Lavaei, NeurIPS Spotlight (2018)
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Main result 2 – Local Guarantee for State 
Estimation

Let a power system be observable. 
Then, a neighborhood around the 
solution has no spurious local 
minima.

Our neighborhood is very large

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2018)

Large enough to encompass “typical” initial points

(Krumpholz, Clements, Davis 1980)
(Wu & Monticelli 1985)

Large enough to be practically useful



(27 dofs)

(white) theorem; (black) possible spurious critical points 37
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Main result 3 – How Many Samples is an 
Initial Point worth?

A linear improvement in the quality of 
the initial guess amounts to a 
constant factor improvement in the 
number of required samples.

The better initial guess you have, 
the fewer samples you need.

Zhang & Zhang, NeurIPS Spotlight (2020)



• Convex relaxation for Optimal Power Flow
• Embracing local minima in State Estimation
• Concluding remarks
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Bridging theory and practice

Local Opt
(SE)

Convex
relax

Practice

Theory

Local Opt
(OPF)

δ-RIP
global

δ-RIP
local

Future 
work



• Using insights for SE to explain success of OPF
• Developing SE-like techniques for OPF
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Bringing insights back to OPF

min gen-cost s.t power demand limits
Optimal power flow

State estimation



Conclusions
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- Thank you!
1. Nonconvexity makes power system optimization hard; 

issues of local min and infeasibility.
2. Convex relaxation aims to overcome nonconvexity; gains 

quality and robustness but at cost of speed.
3. Surprising convex-like behavior in nonconvexity between 

power and voltage. Guarantees for state estimation and 
variants.

4. Future work: Bring insights back to OPF.

Email: ryz@illinois.edu


