Embracing Nonconvexity in Power System Optimization: Are Local Minima Really So Bad?

Richard Y. Zhang Univ. of Illinois at Urbana-Champaign (ryz@illinois.edu)

PSERC Webinar February 16, 2021

Optimization View of Power System Planning & Operations

In principle: Mathematical optimization

$$\min_{x \in \mathbb{R}^n} \{ f(x) : g(x) \le 0 \}$$

In practice: No fast & reliable solution.

Our Approach: Structure-Specific Techniques

- Absolute improvements by giving up on generality.
- Rigorous notions of structure \rightarrow Provable guarantees.
- Focus on structure for fresh ideas & broader impact.

Fundamental Barrier: Nonconvexity

Convex: Cut boundary at most twice

Getting stuck at local min or infeasibility

Large-scale algorithms are inherently greedy

All convex problems are alike; each nonconvex problem is nonconvex in its own way.

One-size-fits-all is great for convex; very suspect for nonconvex.

Power Systems: Quadratic Nonconvexity between Power & Voltage

min

min

 $v \in \mathbb{R}^{2n}$

 $v^T A_0 v$ s.t. b_k

Early 2010s. Quadratic form Convex relaxation

gen-cost **s.t** power demand limits

$$\leq v^T A_k v \leq c_k \quad \text{for all } k$$

Mid-late 2010s. Specific A_k matrices Theoretical guarantees

Today: A Surprising Convex-like Behavior

$$\min_{v \in \mathbb{R}^{2n}} \quad \sum_{k} (v^T A_k v - b_k)^2$$

If A_k and b_k satisfy certain properties

No spurious local minima guarantees:

- Local optimization yields global optimality
- Nonconvexity is essentially benign

Outline

- Convex relaxation for Optimal Power Flow
- Embracing local minima in State Estimation
- Concluding remarks

Optimal Power Flow on the Electric Grid

minimize cost of electricity over generator dispatch
subject to
physics of electricity
reliability & security constraints

- Speed: Very fast and often works very well.
- Quality & robustness: No guarantees.
- **Nonconvexity:** Can give very bad or physically impossible solutions.

Early 2010s: Convex relaxation "A one percent improvement Saves \$1 billion."

Convex problem gives provable lower-bound

-- Richard O'Neill (FERC)

Elbert, Mittelmann, "Analysis

of GO Competition Challenge 1 Final Event Problem Difficulty" (2020)

Extract globally

optimal solution

Combining the two approaches

Brief timeline on convex relaxation

- **Issue of nonconvexity** (Momoh 1997; Hiskens & Davy 2001)
- SDP relaxation (Jabr 2006; Bai et al. 2008)
- Global guarantees (Lavaei & Low 2012; Sojoudi & Lavaei 2014; Lavaei et al. 2014; Bose et al. 2015; Madani et al. 2017)
- Chordal conversion (Jabr 2012; Molzahn et al. 2013; Bose et al. 2014; Madani et al. 2015)
- Near-global guarantees (Madani et al. 2014)
- Convergent hierarchies (Josz et al. 2014; Josz & Molzahn 2018)

Powerful guarantees on robustness and quality, but very bad worst-case speed

Worst-case Complexity

Time: $O(n^{3.5})$ to $O(n^{6.5})$ Memory: $O(n^2)$ to $O(n^4)$

Quadratic Memory & Cubic time

Underlying tree-like graph structure: Decomposition approach

Expansions rare, slow, and expensive. Upgrades faster and cheaper.

Rigorous notions: treewidth; tree decompositions; partial separability. 16

Big matrix variable **n**² elements Small matrix variables (1+tw)² N elements

Partial separability (Griewank & Toit 1982; Sun et al 2014)

Overlap constraints *always* partially separable.

If original constraints partially separable, then

(1+tw)⁶ **n** time per IPM iteration via dynamic prog.

Zhang & Lavaei, Mathematical Programming (2020)

Dynamic programming inside an IPM

minimize cost of electricity over generator dispatch
subject to
physics of electricity
reliability & security constraints

Worst-case Time: O(n^{1.5}) Memory: O(n) Empirical Time: O(n) Memory: O(n)

Parameterized by how "tree-like" the network is.

Zhang & Lavaei, Mathematical Programming (2020)

In Practice: European Power System Model

ParametersSecurity Constraintsn = 13,659m = 40,975

Source: Cédric Josz, Stéphane Fliscounakis, Jean Maeght, Patrick Panciatici (2016)

> 99% globally optimal< 3 minutes on a laptop.

Zhang & Lavaei, Mathematical Programming (2020)

Local Optimization in ARPA-e GO

Parameters n = 30,000

Security Constraints m = 300,000,000

> 99.7% (??) globally optimal < 10 minutes

- All top scorers used local optimization.
- "Only provide locally optimality, but seems to be very near globally optimal in practice"
- Similar trends in ML, X-ray imaging.

Elbert, Mittelmann, "Analysis of GO Competition Challenge 1 Final Event Problem Difficulty" (2020) Coffrin, "ARPA-e Grid Competition: SCOPF Overview" (2019)

Outline

- Convex relaxation for Optimal Power Flow
- Embracing local minima in State Estimation
- Concluding remarks

Power System State Estimation

Estimate all voltage phasors using incomplete voltage magnitudes and power measurements.

The August 14th, 2003 Northeast Blackout

"MISO's state estimator was faulty for most of the period between 12:15 & 15:34 EDT."

--US-Canada Power System Outage Task Force (2004)

Want guarantees on state estimation

Why study state estimation?

Optimal power flow

min gen-cost s.t power demand limits

 $\min_{v \in \mathbb{R}^{2n}} \quad v^T A_0 v \quad \text{s.t.} \quad b_k \le v^T A_k v \le c_k \quad \text{for all } k$

State estimation

$$\min_{v \in \mathbb{R}^{2n}} \quad 0 \quad \text{s.t.} \quad b_k = v^T A_k v \quad \text{for all } k$$

$$\min_{v \in \mathbb{R}^{2n}} \quad \sum_k (v^T A_k v - b_k)^2 \quad 1. \text{ No constraints}$$

$$2. \text{ Same math problem in ML / Imaging}$$

3. State estimation successfully solved using local optimization since 1970s

$$\overline{V}_1 = 1, \quad \overline{V}_2 = 0.928 \angle -13.2^\circ, \quad \overline{Y} = \frac{1}{0.01 + j0.1}$$

Existence of bad local minima

Two plausible but very different estimates

Confusion with bad data or error

Indeed, we find four critical points, only one of which is the correct estimate

How well do the two estimates match our measurements?

Correct
Estimate
$$\begin{bmatrix} 1\\ 0.829\\ -13.2^{\circ} \end{bmatrix} \longrightarrow F_{1}(z) - b_{1} = 0$$

$$F_{2}(z) - b_{2} = 0$$

$$F_{3}(z) - b_{3} = 0$$

$$F_{4}(z) - b_{4} = 0$$
Perfect match.
$$F_{4}(z) - b_{4} = 0$$
Spurious
$$\begin{bmatrix} 0.870\\ 0.345\\ -35.7^{\circ} \end{bmatrix} \longrightarrow F_{1}(x) - b_{1} = -0.24 \text{ p.u.}$$

$$F_{2}(x) - b_{2} = -0.14 \text{ p.u.}$$

$$F_{3}(x) - b_{3} = +0.06 \text{ p.u.}$$

$$F_{4}(x) - b_{4} = -0.17 \text{ p.u.}$$
Measurement error?
Bad data?

Intuition: HV / LV Solutions to Power Flow

Convergence to bad local minima Varying quality of the initial guess

Expect a bad initial guess to get stuck at a spurious local min

Experiment results: Bad local minima eliminated by redundant measurements

Prior results – No Spurious Local Minima Bhojanapalli, Neyshabur, Srebro, NeurIPS (2016) State estimation just Ge, Lee, Ma, NeurIPS (2016) the rank r = 1 case mminimize $\sum \left(\operatorname{trace}(U^T A_i U) - b_i \right)^2$ over $U \in \mathbb{R}^{n \times r}$ i=1"Restricted Isometry Property" If A_1, \ldots, A_m satisfy δ -RIP (Recht, Fazel, Parrilo 2010) and $\delta < 1/5$, then $\delta \approx 0.99$ in SE !! **Globally optimal**

Can the 1/5 be improved?

(Bhojanapalli et al. 2016) (Ge et al. 2017) (Li & Tang 2017) (Zhu et al. 2017) etc.32

Prior results – No Spurious Local Minima

Main result 1 – Necessary & Sufficient

First sharp characterization.

34

Zhang, Sojoudi, Lavaei, Journal of Machine Learning Research (2019)

Practical implications for $\delta > 1/2$?

spurious local min

> 0% failure

100% success

no spurious local min

Fundamental limitations of structure-agnostic global guarantees

Zhang, Josz, Sojoudi, Lavaei, NeurIPS Spotlight (2018)

Main result 2 – Local Guarantee for StateEstimation(Krumpholz, Clements, Davis 1980)
(Wu & Monticelli 1985)

Let a power system be observable. Then, a neighborhood around the solution has no spurious local minima.

Our neighborhood is very large

Large enough to encompass "typical" initial points Large enough to be practically useful

Main result 3 – How Many Samples is an Initial Point worth?

A linear improvement in the quality of the initial guess amounts to a constant factor improvement in the number of required samples.

> The better initial guess you have, the fewer samples you need.

Zhang & Zhang, NeurIPS Spotlight (2020)

Outline

- Convex relaxation for Optimal Power Flow
- Embracing local minima in State Estimation
- Concluding remarks

Bridging theory and practice

Practice

Bringing insights back to OPF

Optimal power flow

min gen-cost s.t power demand limits

 $\min_{v \in \mathbb{R}^{2n}} \quad v^T A_0 v \quad \text{s.t.} \quad b_k \le v^T A_k v \le c_k \quad \text{for all } k$

State estimation

$$\min_{v \in \mathbb{R}^{2n}} \quad 0 \quad \text{s.t.} \quad b_k = v^T A_k v \quad \text{for all } k$$

$$\min_{v \in \mathbb{R}^{2n}} \quad \sum_{k} (v^T A_k v - b_k)^2$$

- Using insights for SE to explain success of OPF
- Developing SE-like techniques for OPF

Conclusions - Thank you!

- 1. Nonconvexity makes power system optimization hard; issues of local min and infeasibility.
- 2. Convex relaxation aims to overcome nonconvexity; gains quality and robustness but at cost of speed.
- 3. Surprising convex-like behavior in nonconvexity between power and voltage. Guarantees for state estimation and variants.
- 4. Future work: Bring insights back to OPF.

