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Optimization View of
Power System Planning & Operations

In principle: Mathematical optimization
min { f(z) : g(z) < 0}
rERM

In practice: No fast & reliable solution.
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Our Approach:
Structure-Specific Techniques

Provable improvement

Speed |

Linear
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purpose MILP
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theory

» Absolute improvements by giving up on generality.
« Rigorous notions of structure - Provable guarantees.
* Focus on structure for fresh ideas & broader impact.



Fundamental Barrier: Nonconvexity

A

Cost

Convex: Cut boundary at most twice



Getting stuck at local min or infeasibility
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Large-scale algorithms are inherently greedy



All convex problems are alike;
each nonconvex problem
IS nonconvex In its own way.

One-size-fits-all is great for convex;
very suspect for nonconvex.



Power Systems: Quadratic Nonconvexity
between Power & Voltage
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min gen-cost s.t power demand limits

min @ for all k
’UERQn

Early 2010s. Mid-late 2010s.
Quadratic form Specific A, matrices
Convex relaxation  Theoretical guarantees 7



Today: A Surprising Convex-like Behavior

min Z(’UTAkv — bk)2

ERQn
Y 2

If A, and b, satisfy certain properties

Large Negative Globally
gradient curvature optimal
No spurious local minima guarantees:
* Local optimization yields global optimality
* Nonconvexity is essentially benign



Outline

« Convex relaxation for Optimal Power Flow
« Embracing local minima in State Estimation
« Concluding remarks

Large Negative Globally
gradient curvature optimal



Optimal Power Flow on the Electric Grid

minimize cost of electricity over generator dispatch

subject to physics of electricity
reliability & security constraints
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Since 1960s: Linearization, Local Optim.

A “A one percent improvement

saves $1 billion.”
- Richard O’Neill (FERC)

Elbert, Mittelmann, “Analysis
of GO Competition
Challenge 1 Final Event
Problem Difficulty” (2020)

Cost

O
+ Speed: Very fast and often works very well.

« Quality & robustness: No guarantees.

* Nonconvexity: Can give very bad or physically
iImpossible solutions.
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Early 2010s: Convex relaxation

A “A one percent improvement

saves $1 billion.”
- Richard O’Neill (FERC)

Elbert, Mittelmann, “Analysis
of GO Competition
Challenge 1 Final Event
Problem Difficulty” (2020)

Cost

Extract globally
optimal solution

Convex problem gives provable lower-bound

12



Combining the two approaches

cost of global
. > 99%
A cost of candidate

- Candi'dates Global T

(Guaranteed near-global)
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Brief timeline on convex relaxation

 Issue of nonconvexity (Momoh 1997; Hiskens & Davy 2001)
o SDP relaxation (Jabr 2006; Bai et al. 2008)

* Global guarantees (Lavaei & Low 2012; Sojoudi & Lavaei 2014;
Lavaei et al. 2014; Bose et al. 2015; Madani et al. 2017)

 Chordal conversion (abr 2012; Molzahn et al. 2013; Bose et al.
2014; Madani et al. 2015)

* Near-global guarantees (Madani et al. 2014)
« Convergent hierarchies (Josz et al. 2014; Josz & Molzahn 2018)

Powerful guarantees on robustness and quality,
but very bad worst-case speed

Worst-case Complexity
Time: O(n3°) to O(N®°) g
Memory: O(n?) to O(N*) g

14



Quadratic Memory & Cubic time
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Underlying tree-like graph structure:
Decomposition approach
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Expansions rare, slow, and expensive. Upgrades faster and cheaper.
Rigorous notions: treewidth; tree decompositions,
partial separability.
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(1+tw)2 N Need to enforce
new constraints overlap constraint

chordal
conversion 7 !

—_

Big matrix variable Small matrix variables
N? elements (1+tw)2 N elements

Partial Separability (Griewank & Toit 1982; Sun et al 2014)
Overlap constraints always partially separable.
If original constraints partially separable, then

(1+tw)® N time per IPM iteration via dynamic prog.
Zhang & Lavaei, Mathematical Programming (2020)



Dynamic programming inside an IPM

minimize cost of electricity over generator dispatch

subject to physics of electricity
reliability & security constraints

Dualized Clique Tree Conversion
with Auxillary Variables

Worst-case Empirical
Time: O(n'9) Time: O(n)
Memory: O(n) Memory: O(n)

Parameterized by how “tree-like” the network is.

Zhang & Lavaei, Mathematical Programming (2020) 1@



In Practice: European Power System Model

Parameters Security Constraints
n—13659 m = 40975

Source Cédric Josz Stephane Fliscounakis, Jean Maeght, Patrlck
Panciatici (2016)

> 99% globally optimal
< 3 minutes on a laptop.

Zhang & Lavaei, Mathematical Programming (2020) 9



Local Optimization in ARPA-e GO

Parameters Security Constraints
n = 30,000 m = 300,000,000

s

GRID OPTIMIZATION (GO)

> 99.7% (77) globally optimal < 10 minutes

« All top scorers used local optimization.

* “Only provide locally optimality, but seems to be very
near globally optimal in practice”

« Similar trends in ML, X-ray imaging.

Elbert, Mittelmann, “Analysis of GO Competition Challenge 1 Final Event Problem Difficulty” (2020)
Coffrin, “ARPA-e Grid Competition: SCOPF Overview” (2019) 20



Outline

~ axation for Ontimal F £
« Embracing local minima in State Estimation
« Concluding remarks

Large Negative Globally
gradient curvature optimal
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Power System State Estimation
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Estimate all voltage phasors

using incomplete voltage magnitudes

and power measurements.




The August 14", 2003 Northeast Blackout

-~

Toronto

- New York

*MISO'’s state estimator was faulty for most
of the period between 12:15 & 15:34 EDT.”

--US-Canada Power System Outage Task Force (2004)

Want quarantees on state estimation




Why study state estimation?

Optimal power flow
min gen-cost s.t power demand limits

migl vl Agv  st. by < vl Apv<e¢, forall k
veER=M

State estimation
min 0 s.t. b, =vl Apv for all k

2 /

- T
v R > (v Agv —by) — 2. Same math problem
& in ML / Imaging
3. State estimation successfully solved using
local optimization since 1970s

24



Risk of plausible but fictitious
estimations: A Two-Bus Example

Three “Power Flow”
measurements

b2= P2

@ b, = P, [~ by =1Vq? bs = Q,
A A
o— F—e—p

One redundant
measurement

1

Vi=1 V,=0.928/—-132° Y =
e T ! 0.01 + j0.1

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2019) 25



Existence of bad local minima
g, 2 (T Aw b

Correct
Estimate

Bus2
angle

40t

-60

Spurious
Estimate -sot

Bus 2 magnitude

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2019)



Two plausible but very different estimates

Indeed, we find four critical points, only one of which is the correct estimate
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Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2019)



Confusion with bad data or error

Indeed, we find four critical points, only one of which is the correct estimate

—|a:1|- 1] [ 0.846 | [0
lzo| | € 0.829 .1 0401 |, 10
_13:2_ _—13.2°_ _—32.0°_ 0
Global Saddle Local
minim. point maxim.

B 1 ] Fl(Z) —b1 =0
Cor.rect 0.829 p F2(z) —b2 =0 Perfect match.
Estimate |—13.2° F3(z) —b3 =0
Fi(Z) - b-’l =0
| [ 0.870 Fi(z) = by
Spurious | () 345 | ey Fa(z) — by Measurement error?
Estimate | _ 35 70 Fy(z) — bs Bad data?
F1 (T) - b1

Zhang, Lavaei, Baldick, IEEE Trans. Control of ystems (2019)



Intuition:
|m{V2} 0
BEFORE 0.1
redund.
meas. -02°f
-0.3
|m{V2} 0
AFTER 01
redund.
meas. -0.2
-0.3

HV / LV Solutions to Power Flow

LV solution HV solution

/ vi=1+ 0]

Re{vy}

Local min?? Global min 2¢



Convergence to bad local minima
Varying quality of the initial guess

Im{v,} 1

Bad initial guess

Good initial guess
(Warm start)

‘Q (Random start)
®
True state of Spurious state
the system (Local min)
(Global min)

- Re{v,}

Expect a bad initial guess to get stuck
at a spurious local min

30



Experiment results: Bad local minima

eliminated by redundant measurements
Success rate over 100 trials

All
redund. IEEE 39-bus system 1 100%
T recovery

8 |Is this guaranteed?

0.8
1 0.7
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meas 106
to 25 105
dofs
1 0.4
2
0.3
1.5 0.2
0.1
No -- o
’ 0%
redund. — 0
t 0.2 0.4 0.6 0.8 14 recovery
meas. .
warm start ratio randomness random start

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2019)



Prior results — No Spurious Local Minima

Bhojanapalli, Neyshabur, Srebro, NeurlPS (2016) State estimation jUSt

Ge, Lee, Ma, NeurlPS (2016) the rank r = 1 case

minimize Z (trace(UTAiU) — bz.)2 over U € R*X7

1=1 “Restricted Isometry Property”
It A,, ..., A, satisfy 0-RIP (Recht, Fazel, Parrilo 2010)

and 0 < 1/5, then 0=0.99in SE !l

Globally optimal
Can the 1/5 be improved?

(Bhojanapalli et al. 2016) (Ge et al. 2017) (Li & Tang 2017) (Zhu et al. 2017) etc.s2



Prior results — No Spurious Local Minima

State estimation

Many 0 1/5 \

diverse |

I
samples Good 297

1
| O

33



Main result 1 — Necessary & Sufficient

Let rank r = 1.

If & < 1/2, then no spurious local min.
Many QO 1/2

diverse I ’|6
samples © Good ~ Bad

If & = 1/2, many counterexamples.

First sharp characterization.

Zhang, Sojoudi, Lavaei, Journal of Machine Learning Research (2019) 34



Practical implications
foro>1/2 7

spurious > 0%
local min % : failure
no
100% .
spurious
success .
local min

Fundamental limitations of
structure-agnostic global guarantees

Zhang, Josz, Sojoudi, Lavaei, NeurlPS Spotlight (2018) 35



Main result 2 — Local Guarantee for State

Estimation (Krumpholz, Clements, Davis 1980)
(Wu & Monticelli 1985)

Let a power system be observable.
Then, a neighborhood around the

solution has no spurious local
minima.

Our neighborhood is very large

Large enough to encompass “typical” initial points
Large enough to be practically useful

Zhang, Lavaei, Baldick, IEEE Trans. Control of Network Systems (2018) 36



14-bus problemm =27 (27 dofs)

-2 1.5 -1 -0.5 0 0.5 1 15 2

Re(xs-zs)
(white) theorem; (black) possible spurious critical points



Main result 3 — How Many Samples is an
Initial Point worth?

A linear improvement in the quality of
the initial guess amounts to a

constant factor improvement in the
number of required samples.

The better initial guess you have,
the fewer samples you need.

Zhang & Zhang, NeurlPS Spotlight (2020) 38



Outline

- o ation for Ootimal B o
b cing local minima in State Estimat

« Concluding remarks

Globally

Large Negative
gradient curvature optimal
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Bridging theory and practice

Theory

relax

local

Local Opt
(OPF)

Future

Convex  ORIP = — work

global /
— — O-RIP

Local Opt
(SE)

Practice

40



Bringing insights back to OPF

Optimal power flow

min gen-cost s.t power demand limits

min vl Agv  st. by < vl Agw <e¢. for all k

State estimation

m]én 0 s.t. bp=v0v'Awv forall k
vE 2n

min Z(UTAkv — b)?

UeRQn
k

« Using insights for SE to explain success of OPF
* Developing SE-like techniques for OPF

41



Conclusions - Thank you!

1. Nonconvexity makes power system optimization hard;
iIssues of local min and infeasibility.

2. Convex relaxation aims to overcome nonconvexity; gains
quality and robustness but at cost of speed.

3. Surprising convex-like behavior in nonconvexity between
power and voltage. Guarantees for state estimation and

variants.
4. Future work: Bring insights back to OPF.

Email: ryz@illinois.edu
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