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Presentation Outline

• Inter-Area Resonance - Oscillations
• Interactions of a forced oscillation with system 

modes

• Analysis of June 17, 2016 eastern event

• Theory base for the control

• Control for mitigation

• Future work
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Small Signal Stability

 Oscillations must remain well-damped

 Either sustained oscillations or growing 
oscillations called small-signal instability

 Caused by unusual operating conditions or 
poor control designs

 Some eigenvalues become negatively damped 
resulting in small signal instability

 August 10, 1996 WECC blackout a classical 
example

 Forced Oscillations 



Forced Oscillation Sources

• Rough zone operation of certain hydro units 
(Francis turbines)

• Mechanical control failures (valves)

• Power electronics control issues (wind,solar,HVDC)
• Poor or incorrect designs (operation outside design 

range)

• Problematic loads: arc furnaces, oil refineries
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Forced Oscillations

• Signature: Sudden appearance and end of 
oscillations (not related to grid events)

• Mechanism: Root cause external to power grid 
operations

• Warning signs: Not much. Problem tends to 
repeat itself until corrected.

• Challenge: Effects are local usually. Can lead to 
wide-area oscillations sometimes from inter-
area resonance. 
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Jan 11, 2019 Eastern System Event
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Resonance in Physics
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Resonance with Inter-area Mode

Resonance effect high when:
(R1) Forced Osc freq near System Mode freq
(R2) System Mode poorly damped
(R3) Forced Oscillation location near distant ends 
(strong participation) of the System Mode
Resonance effect medium when:

• Some of the conditions hold
Resonance effect small when:

• None of the condition holds
(Source: Our 2016 paper in IEEE Trans. Power Systems)



Oscillation Shape Proposition

�̇�𝐱 = 𝐀𝐀𝐱𝐱 + 𝐛𝐛𝑢𝑢, 𝑢𝑢 𝑡𝑡 = 𝐻𝐻 cos(𝜔𝜔𝑡𝑡 + 𝛾𝛾)

Sinusoidal steady state:
𝑥𝑥𝑖𝑖 𝑡𝑡 = 𝐴𝐴𝐹𝐹𝑅𝑅𝑖𝑖 cos 𝜔𝜔𝑡𝑡 + 𝛹𝛹𝐹𝐹𝑅𝑅𝑖𝑖
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Oscillation Shape Proposition

Oscillation shape is a weighted sum of mode 
shapes from all system modes.
Each mode 𝛼𝛼𝑖𝑖 + 𝑗𝑗𝛽𝛽𝑖𝑖 contributes its mode 
shape �𝐯𝐯𝒊𝒊 multiplied by amplification factor Ai
and shifted by rotation factor 𝜓𝜓𝑖𝑖

𝐴𝐴𝑖𝑖 = −
�𝐰𝐰𝒊𝒊
𝐓𝐓𝐛𝐛

𝛼𝛼𝑖𝑖
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Modal Amplification Factors

𝐴𝐴𝑖𝑖 =
�𝐰𝐰𝒊𝒊
𝐓𝐓𝐛𝐛

𝛼𝛼𝑖𝑖
2 + 𝜔𝜔 − 𝛽𝛽𝑖𝑖 2

• �𝐰𝐰𝒊𝒊
𝐓𝐓𝐛𝐛 ⇒ Strong controllability (R3)

• 𝜔𝜔 ≈ 𝛽𝛽𝑖𝑖 ⇒ Close frequencies (R1)
• 𝛼𝛼𝑖𝑖 small ⇒ Poor damping (R2)



Kundur System Example
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Area1 Area2

Type Frequency Damping 
Ratio 𝐴𝐴𝑖𝑖∠𝜓𝜓𝑖𝑖

Mode IA Inter-area 0.62 Hz 3.0% 4.70∠56.0°

Mode LA1 Local 
(Area1) 0.56 Hz 6.8% 0.91∠ − 151.7°

Mode LA2 Local 
(Area2) 0.67 Hz 1.4% 0.36∠174.7°

Forced 
Oscillation    
@ 0.62 Hz



Mode shapes

Modal Contributions

G1
G2
G3
G4

Oscillation Shape



June 17, 2016 Eastern Event
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0.28 Hz Oscillation Shape
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FFDD Power Spectrum @ 3:01 AM (Before)
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0.2 Hz North-South Mode from FSSI
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0.3 Hz North-South Mode from FFDD
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0.28 Hz Oscillation Shape
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FSSI Estimates During Event (3:13 to 3:17)

0.28 Hz 
Osc

0.3 Hz 
System 
Mode
(10% 

Damping 
Ratio)



Resonance Conditions (June 17, 2016 event)

(R1) Forced Osc freq near System Mode freq (close)
• 0.28 Hz Oscillation versus 0.3 Hz Mode 
(R2) System Mode poorly damped (invalid)

• 0.3 Hz Well-damped (10% Damping Ratio)
(R3) Forced Osc location near the two distant ends 
(strong participation) of the System Mode (true)

• Mississippi Sensitive Location for the Mode
Only 1+ conditions valid: Resonance effect small.



Mitigation of Resonant Oscillations

• How to stop the oscillations?
• Source location of forced oscillations
• Many methods proposed
• Problematic for resonant oscillations

• How to reduce resonant oscillations?
• Increase the damping of inter-area mode
• Closed-loop controls have been proposed
• We propose an alternate open-loop control 

for interim reduction of oscillations
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Open-loop Control for Mitigation

Transmission 
Network

New input
�𝐻𝐻 cos(𝜔𝜔𝑡𝑡 + �𝛾𝛾)

Forced 
Oscillation
𝐻𝐻 cos(𝜔𝜔𝑡𝑡 + 𝛾𝛾)

SVC  
HVDC

© Washington State University
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Unknown     
Bus i

Apply a strategically designed input at the same frequency with the correct 
phase and amplitude to “cancel out” the effects of unknown forced oscillation. 

Superposition holds for small-signal analysis.

Control Bus j



Theory Base
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• Resonance mainly with one inter-area mode say 
𝛼𝛼𝑟𝑟 ± 𝑗𝑗𝛽𝛽𝑟𝑟 :

�̇�𝐱 = 𝐀𝐀𝐱𝐱 + 𝐛𝐛𝑢𝑢, 𝑢𝑢 𝑡𝑡 = 𝐻𝐻 cos(𝜔𝜔𝑡𝑡 + 𝛾𝛾)
Sinusoidal steady state:

𝑥𝑥𝑖𝑖 𝑡𝑡 = 𝐴𝐴𝐹𝐹𝑅𝑅𝑖𝑖 cos 𝜔𝜔𝑡𝑡 + 𝛹𝛹𝐹𝐹𝑅𝑅𝑖𝑖

𝐀𝐀𝐹𝐹𝑅𝑅∠𝚿𝚿𝐹𝐹𝑅𝑅

= −(𝐻𝐻∠𝛾𝛾)�𝐯𝐯𝑟𝑟
�𝐰𝐰𝑟𝑟
T𝐛𝐛

𝛼𝛼𝑟𝑟2 + 𝜔𝜔 − 𝛽𝛽𝑟𝑟 2
∠ �𝐰𝐰𝑟𝑟

T𝐛𝐛 + ∠ 𝛼𝛼𝑟𝑟 + 𝑗𝑗 𝜔𝜔 − 𝛽𝛽𝑟𝑟



Theory Base
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𝑢𝑢 𝑡𝑡 = 𝐻𝐻 cos(𝜔𝜔𝑡𝑡 + 𝛾𝛾) at bus i.
�𝑢𝑢 𝑡𝑡 = �𝐻𝐻 cos(𝜔𝜔𝑡𝑡 + �𝛾𝛾) applied at bus j.

Sinusoidal steady state:
𝑥𝑥𝑖𝑖 𝑡𝑡 = 𝐴𝐴𝐹𝐹𝑅𝑅𝑖𝑖 cos 𝜔𝜔𝑡𝑡 + 𝛹𝛹𝐹𝐹𝑅𝑅𝑖𝑖

Net Effect = �𝑤𝑤𝑟𝑟𝑖𝑖𝑏𝑏𝑖𝑖 𝐻𝐻∠𝛾𝛾 + �𝑤𝑤𝑟𝑟𝑗𝑗𝑏𝑏𝑗𝑗 �𝐻𝐻∠�𝛾𝛾

𝐴𝐴𝐹𝐹𝑅𝑅𝑖𝑖 = 0  when �𝐻𝐻∠�𝛾𝛾 = − �𝑤𝑤𝑟𝑟𝑖𝑖𝑏𝑏𝑖𝑖 𝐻𝐻∠𝛾𝛾
�𝑤𝑤𝑟𝑟𝑟𝑟𝑏𝑏𝑟𝑟

How to find the control signal amplitude �𝐻𝐻
and the phase �𝛾𝛾 using local measurements?



Control Example
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20 MW forced 
oscillation from the 

governor @ 0.61 Hz

Step 1) Estimate forced oscillation frequency
Step 2) Estimate �𝛾𝛾 by iteration starting from �𝐻𝐻0 and �𝛾𝛾0
Step 3) Adjust �𝐻𝐻 as relevant for effective mitigation

Control input
�𝐻𝐻 cos(𝜔𝜔𝑡𝑡 + �𝛾𝛾)

39 MW Tie-line 
oscillations



Step 1) Frequency Estimation
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Estimate forced 
oscillation 
frequency         
@ 0.61 Hz 

• We can use time-domain 
(Prony/HTLS/ERA) or 
frequency domain methods 
(FFT/PSD)

• Phase-Locked Loop

Method Estimated 
Frequency (Hz)

FFT 0.61
Prony 0.61

Matrix Pencil 0.61
HTLS 0.61



Step 2) Phase Estimation
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Control 
Angle

(Degrees)

FO 
Magnitude
𝑃𝑃𝐺𝐺1(MW)

Gradient 
Search

10 20.26 Initialize

15 21.56 Flip

5 19.38 Continue

0 18.70 Continue

-5 18.22 Continue

-10 18.28 Stop

FO

Control

Control signal phase �𝛾𝛾

Minimum amplitude for �𝛾𝛾 = -9.9 deg 

Use phase of 𝑃𝑃𝐺𝐺1 to estimate �𝛾𝛾0



Step 3) Amplitude Estimation
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FO

Control

• Choose �𝛾𝛾 = -9.9 deg, and �𝐻𝐻0 = 10.4 MW.
• Increase �𝐻𝐻 by �∆𝐻𝐻 and estimate the change in tie-line flow 

oscillation amplitude. 
• 16.2 MW oscillations @ �𝐻𝐻 = 10.4 MW 
• 11.2 MW oscillations @ �𝐻𝐻 = 15.6 MW 

• Using linear extrapolation, estimate �∆𝐻𝐻 needed for desired 
mitigation. �𝐻𝐻 ≈ 19.8 MW for 0 MW oscillations

• Apply the control with �𝐻𝐻 = 19.8 MW and �𝛾𝛾 = -9.9 deg
• Tie-line flow oscillations nearly zero.

�𝐻𝐻 cos(𝜔𝜔𝑡𝑡 + �𝛾𝛾)



Control for Mitigation
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FO

Control

�𝐻𝐻 = 19.8 MW  
�𝛾𝛾 = -9.9 deg

�𝐻𝐻 cos(𝜔𝜔𝑡𝑡 + �𝛾𝛾)

Forced Oscillation response Forced Oscillation and Control 
(applied @ 65 sec) response



Resonant Forced Oscillation Events

• Many resonant forced oscillations observed in 
different interconnections. 

• Need to understand dominant inter-area modes 
and track the damping of system inter-area 
modes

• Inter-area resonance – potential risk for 
operational reliability

• Effective source location algorithms needed
• Controls for mitigation of resonant oscillations 

need to be developed and tested
• Novel open-loop control proposed



Questions?

Mani V. Venkatasubramanian
(mani@wsu.edu)
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