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Presentation Outline

 Inter-Area Resonance - Oscillations

* Interactions of a forced oscillation with system
modes

* Analysis of June 17, 2016 eastern event
* Theory base for the control
« Control for mitigation

 Future work



Small Signal Stability

Oscillations must remain well-damped

Either sustained oscillations or growing
oscillations called small-signal instability

Caused by unusual operating conditions or
poor control designs

Some eigenvalues become negatively damped
resulting in small signal instability

August 10, 1996 WECC blackout a classical
example

Forced Oscillations



Forced Oscillation Sources

« Rough zone operation of certain hydro units
(Francis turbines)

* Mechanical control failures (valves)

* Power electronics control issues (wind,solar,HVDC)

« Poor or incorrect designs (operation outside design
range)

 Problematic loads: arc furnaces, oil refineries



Forced Oscillations

« Signature: Sudden appearance and end of
oscillations (not related to grid events)

 Mechanism: Root cause external to power grid
operations

* Warning signs: Not much. Problem tends to
repeat itself until corrected.

« Challenge: Effects are local usually. Can lead to
wide-area oscillations sometimes from inter-
area resonance.




Jan 11, 2019 Eastern System Event

FNET Data Display [1/11/2019 Line Trip]
Time: 8:44:43.9 UTC 59.9807 Hz
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Resonance in Physics
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Resonance with Inter-area Mode

Resonance effect high when:
(R1) Forced Osc freq near System Mode freq
(R2) System Mode poorly damped

(R3) Forced Oscillation location near distant ends
(strong participation) of the System Mode

Resonance effect medium when:
« Some of the conditions hold
Resonance effect small when:

* None of the condition holds
(Source: Our 2016 paper in IEEE Trans. Power Systems)




Oscillation Shape Proposition

X = AX + bu, u(t) = H cos(wt + )

Sinusoidal steady state:
x;(t) = App, cos(a)t + EUFRi)
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Oscillation Shape Proposition

Oscillation shape is a weighted sum of mode
shapes from all system modes.

Each mode a; + jg, contributes its mode

shape v multiplied by amplification factor A,
and shifted by rotation factor y,
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Modal Amplification Factors

.
Wb +
Al = —= +—
\/“i + (w — B;)? +++.

e W, b = Strong controllability (R3)
. w = [f; = Close frequencies (R1)

e ; small > Poor damping (R2)



Kundur System Example
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Mode LA1 Local 0.56 Hz 6.8% 0.912 — 151.7°
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Mode shapes
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June 17, 2016 Eastern Event
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0.28 Hz Oscillation Shape
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FFDD Power Spectrum @ 3:01 AM (Before)

Fower Spectral Density - 61772016 3:01:40 AM
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0.2 Hz North-South Mode from FSSI

Mode Shape - 0.210 Hz - 6/17/2016 3:00:00 AM to 3:07:00 AM
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0.3 Hz North-South Mode from FFDD

ModeShape of the Mode @ 0.298 Hz - 6/17/2016 3:00:00 AM to 3:05:00 AM
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0.28 Hz Oscillation Shape
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FSSI Estimates During Event (3:13 to 3:17)
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Resonance Conditions (June 17, 2016 event)

(R1) Forced Osc freq near System Mode freq (close)
 0.28 Hz Oscillation versus 0.3 Hz Mode

(R2) System Mode poorly damped (invalid)
* 0.3 Hz Well-damped (10% Damping Ratio)

(R3) Forced Osc location near the two distant ends
(strong participation) of the System Mode (true)

 Mississippi Sensitive Location for the Mode
Only 1+ conditions valid: Resonance effect small.



Mitigation of Resonant Oscillations

 How to stop the oscillations?
« Source location of forced oscillations
 Many methods proposed
* Problematic for resonant oscillations

 How to reduce resonant oscillations?
* Increase the damping of inter-area mode

* Closed-loop controls have been proposed

 We propose an alternate open-loop control
for interim reduction of oscillations
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Open-loop Control for Mitigation

Control Bus j

New input _~ r
H cos(wt + 9)

Unknown
Bus 1

Forced
Oscillation 7
H cos(wt + y)

Transmission
Network

SVC
HVDC

1

1

Apply a strategically designed input at the same frequency with the correct
phase and amplitude to “cancel out” the effects of unknown forced oscillation.

Superposition holds for small-signal analysis.

© Washington State University
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Theory Base

 Resonance mainly with one inter-area mode say
aT‘ i]ﬁ’l" :
X = AX + bu, u(t) = H cos(wt + y)
Sinusoidal steady state:
x;(t) = Apg, cos(a)t + ‘PFRi)
Apr4Wrr
;b

\/a,% + (w — Br)°

= —(Hzy)V, |2(W;b) + £(a, + j(w — B,))]
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Theory Base

u(t) = H cos(wt +y) at bus i.
i(t) = H cos(wt + 7) applied at bus j.

Sinusoidal steady state:
x;(t) = Apg, cos(a)t + ‘PFRi)
Net Effect = Wribi HL]/ + Wr]b]ﬁﬁ]//\

~ A wyrib; HZ
Apg, =0 when Hzp = — 22—

Wrjbj
How to find the control signal amplitude H
and the phase 7 using local measurements?
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Control Example

Control input 39 M\_N T.|e'||ne
A cos(wt +7) oscillations

1 5 6 7 3 9 10 11 3
~e-taotH] ol
n |

D

Area?

20 MW forced
v\oscillation from the
governor @ 0.61 Hz

Areal

Step 1) Estimate forced oscillation frequency

Step 2) Estimate 7 by iteration starting from H, and 7,
Step 3) Adjust H as relevant for effective mitigation
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Step 1) Frequency Estimation

420 20
2110 2| Estimate forced
209 2, oscillation
30 I 3. _ frequency
380t . i . - DWW"MM\N. MMWWMM @ 0.61 Hz
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requenc
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r enc .
* Phase-Locked Loop A |
HTLS 0.61
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Step 2) Phase Estimation

Controlﬁ@%f@l IE

Areal

Use phase of P, to estimate 7,

50 100 50 0 50 100 150
Control signal phase ¥

Minimum amplitude for y = -9.9 deg

s Area2
(@) +— FO
Control FO
Angle Magnitude
(Degrees) Pz (MW)

10 20.26
15 21.56
5 19.38
0 18.70
-5 18.22
-10 18.28

Gradient
Search

Initialize
Flip
Continue
Continue
Continue
Stop
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Step 3) Amplitude Estimation
Controlﬁ@f@ | | | @1—@

H cos(wt + 9)

Areal Area?
2 4

(@) «— FO

» Choose 7 =-9.9 deg, and H, = 10.4 MW.
* Increase H by AH and estimate the change in tie-line flow
oscillation amplitude.
* 16.2 MW oscillations @ H = 10.4 MW
* 11.2 MW oscillations @ H = 15.6 MW
» Using linear extrapolation, estimate AH needed for desired
mitigation. H ~ 19.8 MW for 0 MW oscillations
* Apply the control with H = 19.8 MW and 7 =-9.9 deg
* Tie-line flow oscillations nearly zero.
29



Control for Mitigation
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Resonant Forced Oscillation Events

Many resonant forced oscillations observed in
different interconnections.

Need to understand dominant inter-area modes
and track the damping of system inter-area
modes

Inter-area resonance — potential risk for
operational reliability

Effective source location algorithms needed

Controls for mitigation of resonant oscillations
need to be developed and tested

Novel open-loop control proposed




Questions?

Mani V. Venkatasubramanian
(mani@wsu.edu)

32



	Analysis and Mitigation of�Resonant Forced Oscillations
	Presentation Outline
	Slide Number 3
	Forced Oscillation Sources
	Forced Oscillations
	Jan 11, 2019 Eastern System Event
	Resonance in Physics
	Resonance with Inter-area Mode
	Oscillation Shape Proposition
	Oscillation Shape Proposition
	Modal Amplification Factors
	Kundur System Example
	Mode shapes
	June 17, 2016 Eastern Event
	0.28 Hz Oscillation Shape
	FFDD Power Spectrum @ 3:01 AM (Before)
	0.2 Hz North-South Mode from FSSI
	0.3 Hz North-South Mode from FFDD
	0.28 Hz Oscillation Shape
	FSSI Estimates During Event (3:13 to 3:17)
	Resonance Conditions (June 17, 2016 event)
	Mitigation of Resonant Oscillations
	Open-loop Control for Mitigation
	Theory Base
	Theory Base
	Control Example
	Step 1) Frequency Estimation
	Step 2) Phase Estimation
	Step 3) Amplitude Estimation
	Control for Mitigation
	Resonant Forced Oscillation Events
	Questions?

