Analysis and Mitigation of Resonant Forced Oscillations

Mani V. Venkatasubramanian Habib Wajid Yuan Zhi Washington State University (mani@wsu.edu)

PSERC Webinar October 12, 2021

Presentation Outline

- Inter-Area Resonance Oscillations
- Interactions of a forced oscillation with system modes
- Analysis of June 17, 2016 eastern event
- Theory base for the control
- Control for mitigation
- Future work

Small Signal Stability

- Oscillations must remain well-damped
- Either sustained oscillations or growing oscillations called small-signal instability
- Caused by unusual operating conditions or poor control designs
- Some eigenvalues become negatively damped resulting in small signal instability
- August 10, 1996 WECC blackout a classical example
- Forced Oscillations

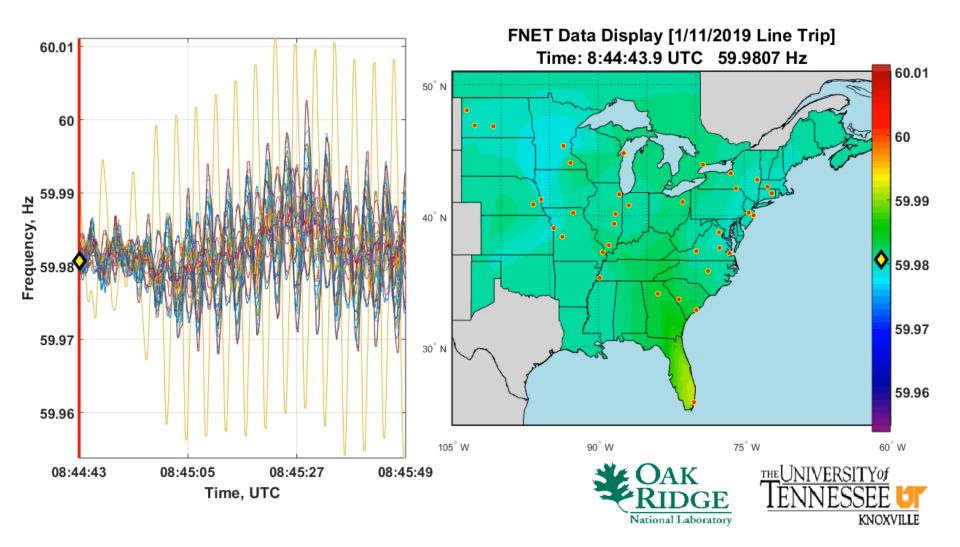
Forced Oscillation Sources

- Rough zone operation of certain hydro units (Francis turbines)
- Mechanical control failures (valves)
- Power electronics control issues (wind, solar, HVDC)
- Poor or incorrect designs (operation outside design range)
- Problematic loads: arc furnaces, oil refineries

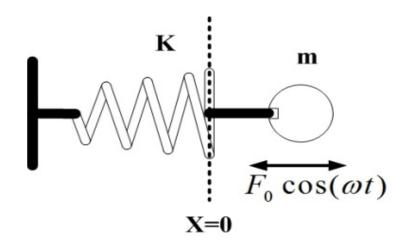
Forced Oscillations

- <u>Signature</u>: Sudden appearance and end of oscillations (not related to grid events)
- <u>Mechanism</u>: Root cause external to power grid operations
- <u>Warning signs</u>: Not much. Problem tends to repeat itself until corrected.
- <u>Challenge:</u> Effects are local usually. Can lead to wide-area oscillations sometimes from interarea resonance.

Jan 11, 2019 Eastern System Event

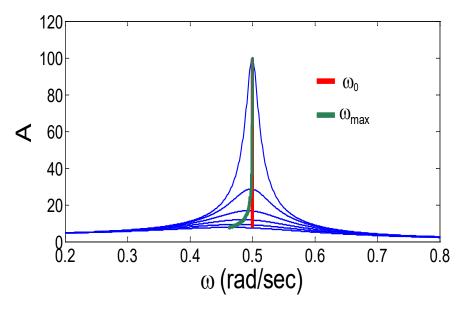


Resonance in Physics



High resonance effect when forced oscillation frequency close to system mode frequency and when system mode poorly damped.

$$\begin{cases} A = \frac{F_0/m}{\sqrt{(\omega_0^2 - \omega^2)^2 + (\omega\gamma)^2}} \\ \tan \delta = \frac{\omega\gamma}{\omega_0^2 - \omega^2} \end{cases}$$



Resonance effect high when:

- (R1) Forced Osc freq near System Mode freq
- (R2) System Mode poorly damped
- (R3) Forced Oscillation location near distant ends (strong participation) of the System Mode

Resonance effect medium when:

- Some of the conditions hold
 Resonance effect small when:
- None of the condition holds (Source: Our 2016 paper in IEEE Trans. Power Systems)

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \ u(t) = H\cos(\omega t + \gamma)$$

Sinusoidal steady state:

$$\begin{aligned} \boldsymbol{x}_{i}(t) &= A_{FR_{i}} \cos\left(\omega t + \boldsymbol{\Psi}_{FR_{i}}\right) \\ \mathbf{A}_{FR} \boldsymbol{\angle} \boldsymbol{\Psi}_{FR} &= -(H \boldsymbol{\angle} \boldsymbol{\gamma}) \left(\sum_{i=1}^{2n_{c}} \tilde{\mathbf{v}}_{i} \frac{|\tilde{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{b}|}{\sqrt{\alpha_{i}^{2} + (\omega - \beta_{i})^{2}}} [\boldsymbol{\angle} (\tilde{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{b}) + \boldsymbol{\angle} (\alpha_{i} + j(\omega - \beta_{i}))] \\ &+ \sum_{i=2n_{c}+1}^{n} \tilde{\mathbf{v}}_{i} \frac{|\tilde{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{b}|}{\sqrt{\lambda_{i}^{2} + \omega^{2}}} [\boldsymbol{\angle} (\tilde{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{b}) + \boldsymbol{\angle} (\lambda_{i} + j\omega)] \right) \end{aligned}$$

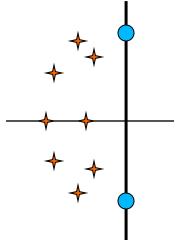
Y. Zhi and V. Venkatasubramanian, "Interaction of Forced Oscillation With Multiple System Modes," *IEEE Trans. Power Systems*, vol. 36, no. 1, pp. 518-520, Jan. 2021

Oscillation Shape Proposition

Oscillation shape is a weighted sum of mode shapes from all system modes.

Each mode $\alpha_i + j\beta_i$ contributes its mode shape \tilde{v}_i multiplied by amplification factor A_i and shifted by rotation factor ψ_i

$$A_i = -\frac{\left|\widetilde{\mathbf{w}}_i^{\mathrm{T}}\mathbf{b}\right|}{\sqrt{\alpha_i^2 + (\omega - \beta_i)^2}}$$

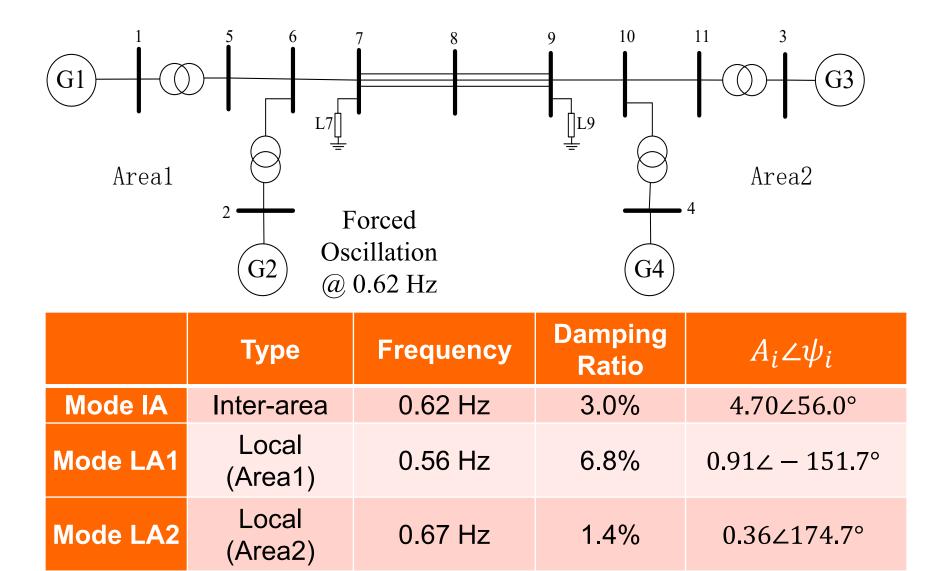


Modal Amplification Factors

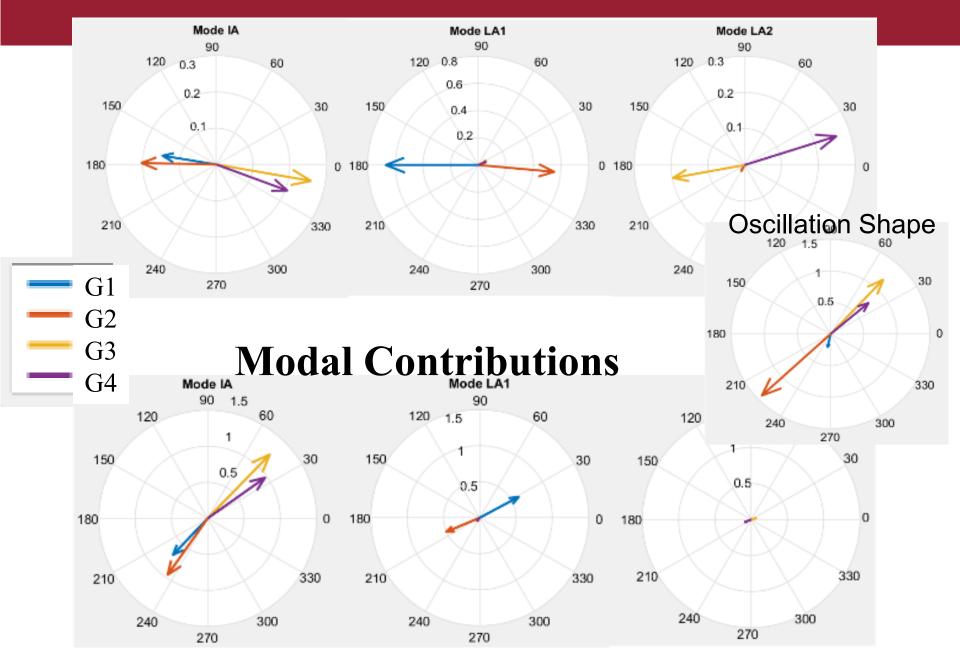
$$|A_i| = \frac{\left|\tilde{\mathbf{w}}_i^{\mathrm{T}}\mathbf{b}\right|}{\sqrt{\alpha_i^2 + (\omega - \beta_i)^2}} \qquad \stackrel{+}{\longrightarrow} \qquad \stackrel{-}{\longrightarrow} \qquad \stackrel{+}{\longrightarrow} \qquad \stackrel{-}{\longrightarrow} \qquad \stackrel{-}{\longrightarrow} \qquad \stackrel{-}{\longrightarrow} \qquad \stackrel{+}{\longrightarrow} \qquad \stackrel{+}{\longrightarrow} \qquad \stackrel{-}{\longrightarrow} \qquad \stackrel{+}{\longrightarrow} \qquad \stackrel{-}{\longrightarrow} \qquad \stackrel{$$

• $\tilde{\mathbf{w}_i^{T}}\mathbf{b} \Rightarrow \text{Strong controllability (R3)}$ $\omega \approx \beta_i \Rightarrow \text{Close frequencies (R1)}$ • $\alpha_i \text{ small} \Rightarrow \text{Poor damping (R2)}$

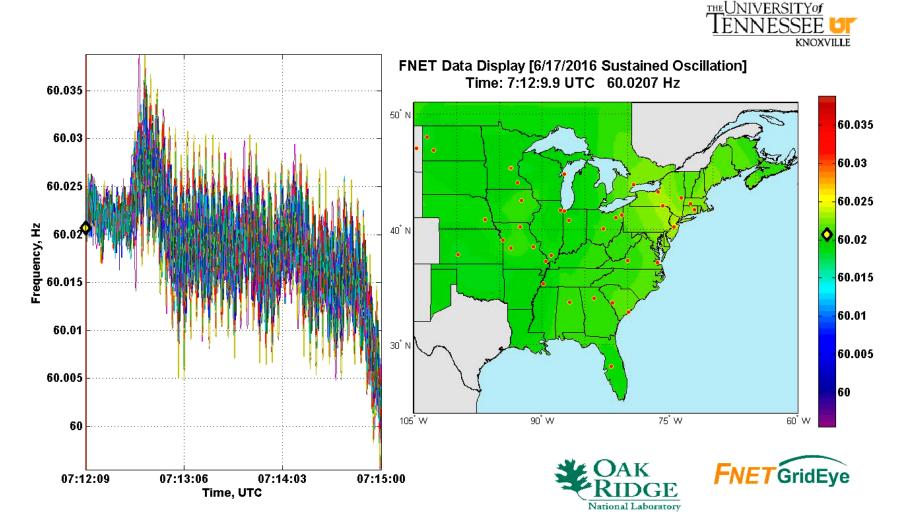
Kundur System Example



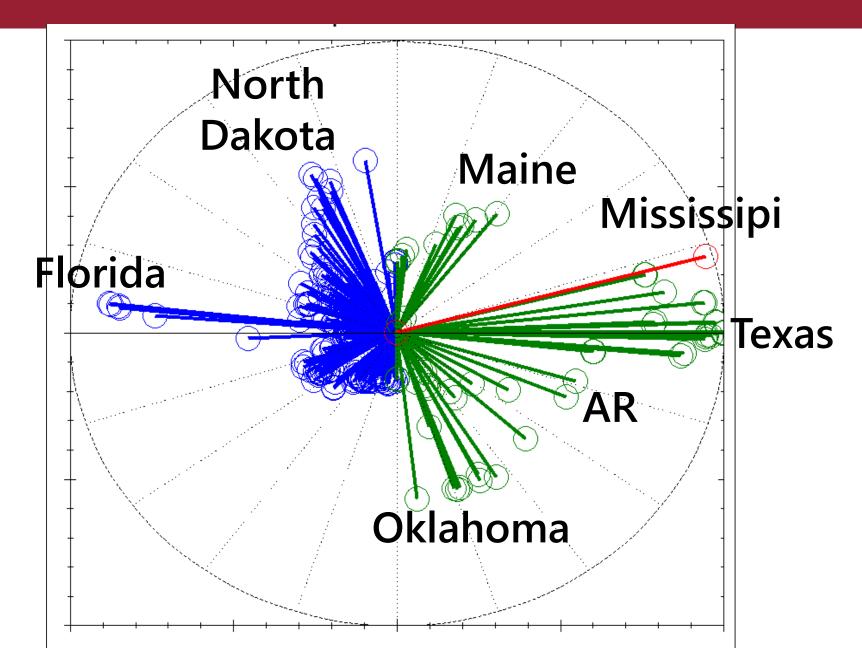
Mode shapes



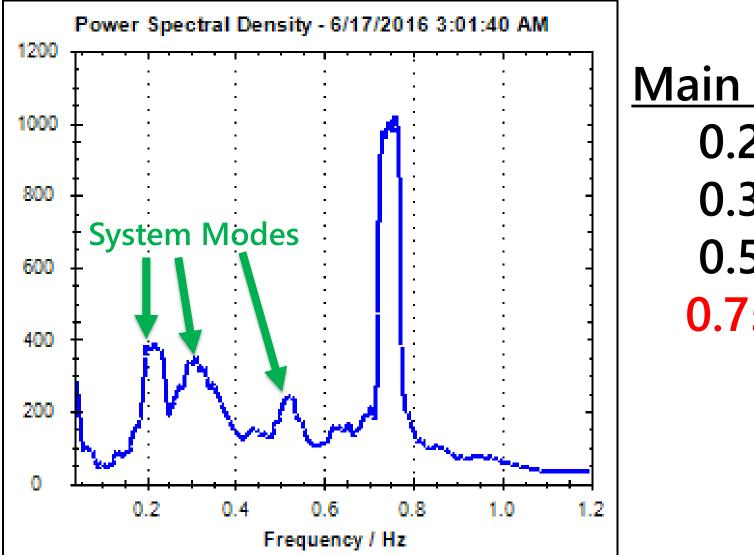
June 17, 2016 Eastern Event



0.28 Hz Oscillation Shape

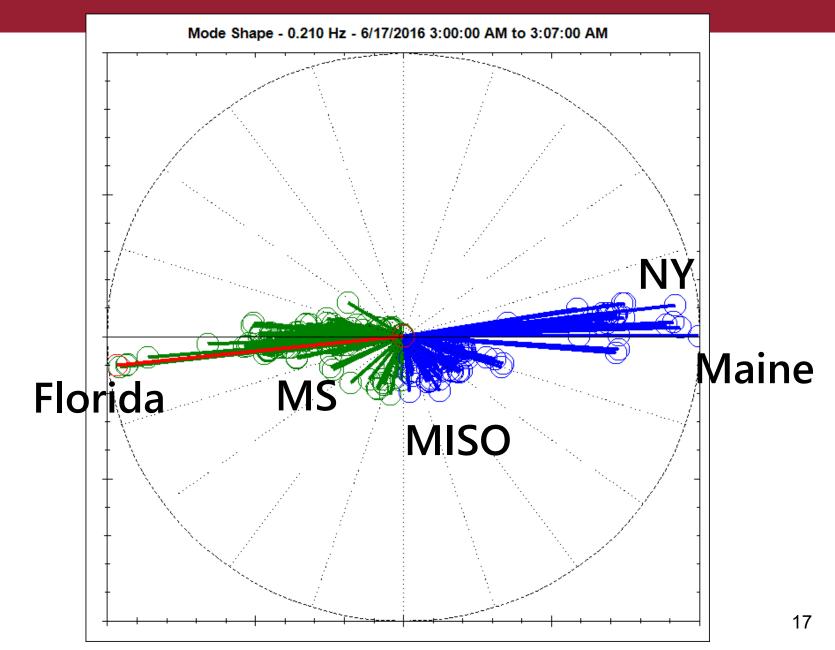


FFDD Power Spectrum @ 3:01 AM (Before)

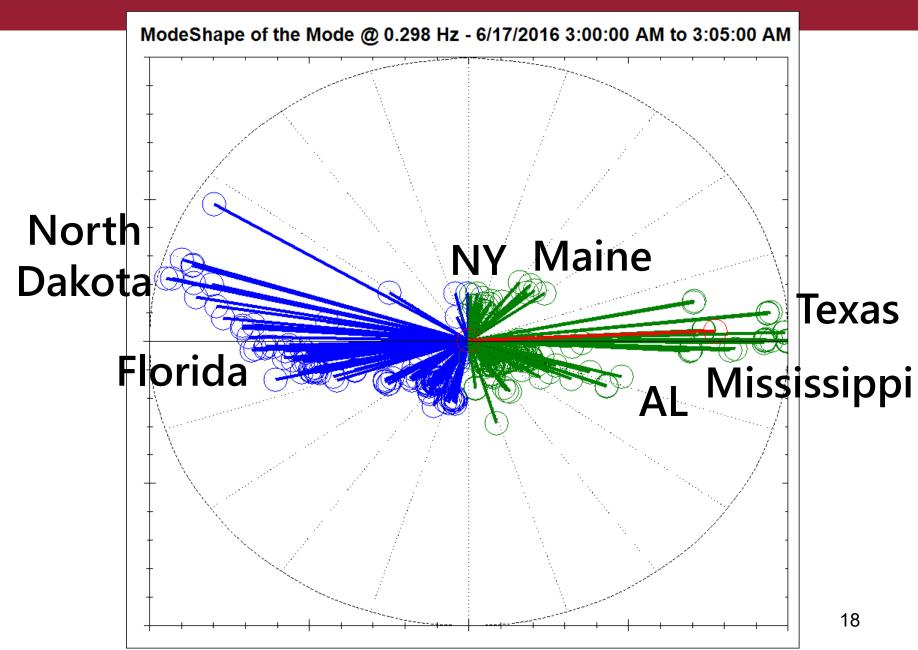


Main modes 0.2 Hz 0.3 Hz 0.5 Hz 0.75 Hz

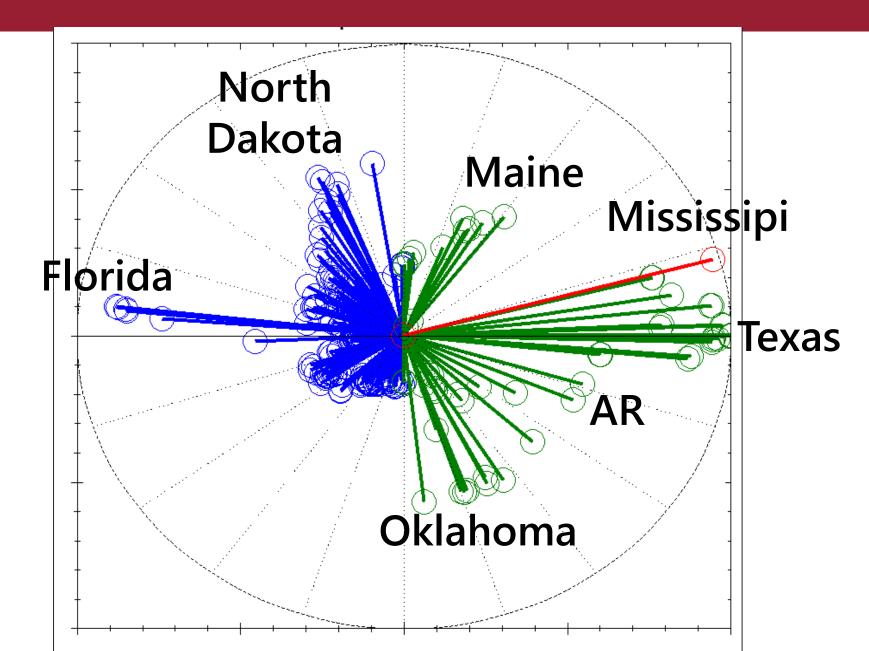
0.2 Hz North-South Mode from FSSI



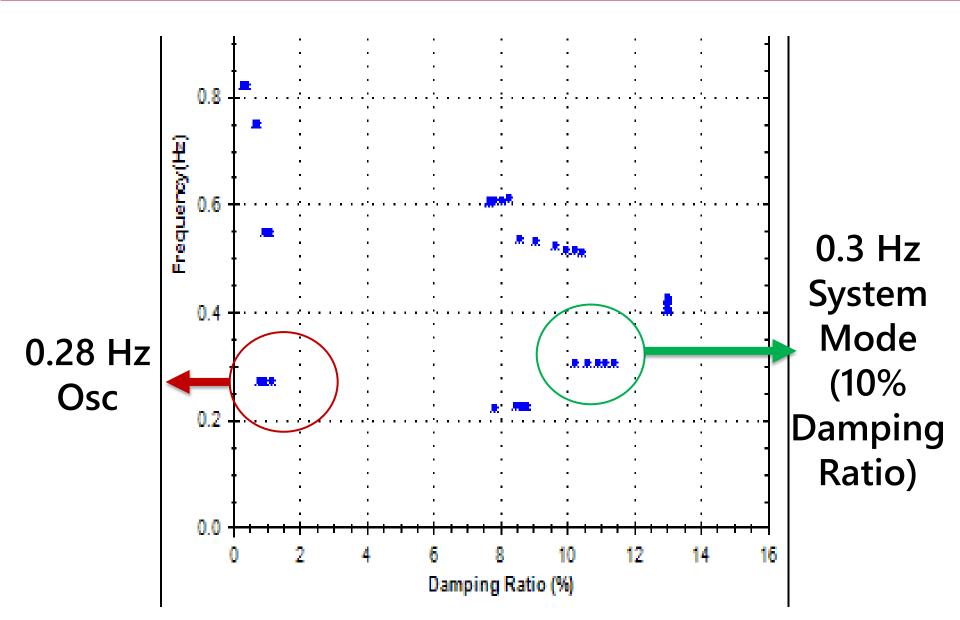
0.3 Hz North-South Mode from FFDD



0.28 Hz Oscillation Shape



FSSI Estimates During Event (3:13 to 3:17)



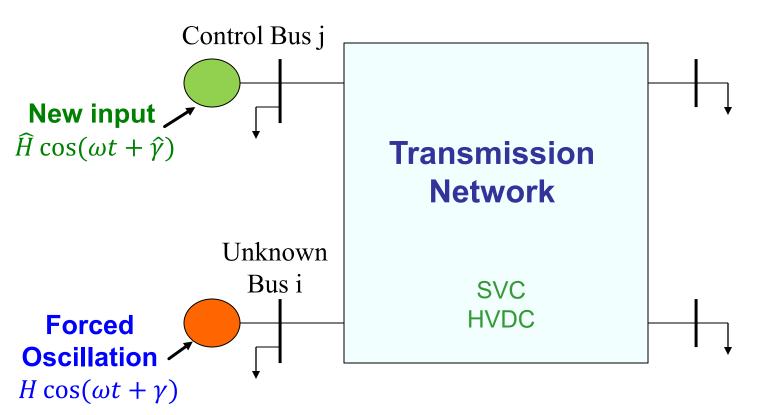
(R1) Forced Osc freq near System Mode freq (close)

- **0.28 Hz Oscillation versus 0.3 Hz Mode** (R2) System Mode poorly damped **(invalid)**
- 0.3 Hz Well-damped (10% Damping Ratio)
 (R3) Forced Osc location near the two distant ends (strong participation) of the System Mode (true)
- Mississippi Sensitive Location for the Mode
 Only 1+ conditions valid: Resonance effect small.

Mitigation of Resonant Oscillations

- How to stop the oscillations?
 - Source location of forced oscillations
 - Many methods proposed
 - Problematic for resonant oscillations
- How to reduce resonant oscillations?
 - Increase the damping of inter-area mode
 - Closed-loop controls have been proposed
 - We propose an alternate open-loop control for interim reduction of oscillations

Open-loop Control for Mitigation



Apply a strategically designed input at the same frequency with the correct phase and amplitude to "cancel out" the effects of unknown forced oscillation. Superposition holds for small-signal analysis.

© Washington State University

Theory Base

• Resonance mainly with one inter-area mode say $\alpha_r \pm j\beta_r$:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \ u(t) = H\cos(\omega t + \gamma)$$

Sinusoidal steady state:

$$x_i(t) = A_{FR_i} \cos(\omega t + \Psi_{FR_i})$$

$$\mathbf{A}_{FR} \angle \mathbf{\Psi}_{FR} = -(H \angle \gamma) \tilde{\mathbf{v}}_r \frac{\left| \widetilde{\mathbf{w}}_r^{\mathrm{T}} \mathbf{b} \right|}{\sqrt{\alpha_r^2 + (\omega - \beta_r)^2}} \left[\angle \left(\widetilde{\mathbf{w}}_r^{\mathrm{T}} \mathbf{b} \right) + \angle \left(\alpha_r + j(\omega - \beta_r) \right) \right]$$

Theory Base

$$u(t) = H \cos(\omega t + \gamma)$$
 at bus i.
 $\hat{u}(t) = \hat{H} \cos(\omega t + \hat{\gamma})$ applied at bus j.

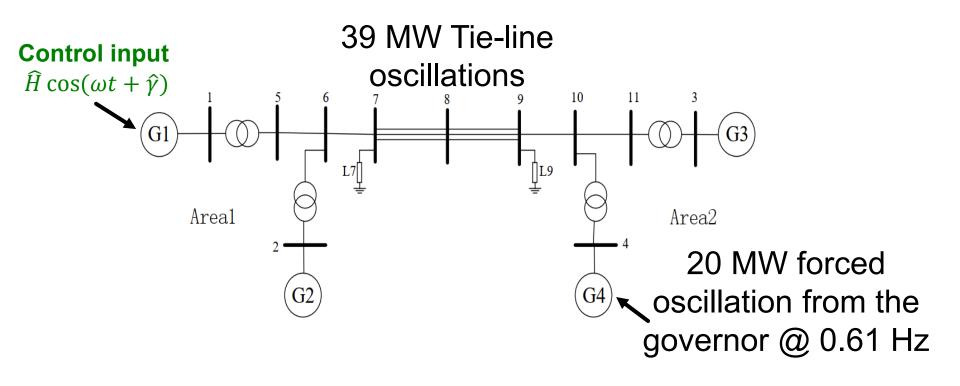
Sinusoidal steady state:

$$x_{i}(t) = A_{FR_{i}} \cos(\omega t + \Psi_{FR_{i}})$$

Net Effect = $\widetilde{w}_{ri}b_{i} H \angle \gamma + \widetilde{w}_{rj}b_{j}\widehat{H} \angle \widehat{\gamma}$
 $A_{FR_{i}} = 0$ when $\widehat{H} \angle \widehat{\gamma} = -\frac{\widetilde{w}_{ri}b_{i} H \angle \gamma}{\widetilde{w}_{rj}b_{j}}$

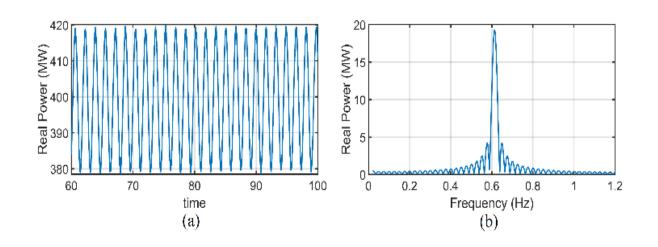
How to find the control signal amplitude \widehat{H} and the phase $\widehat{\gamma}$ using local measurements?

Control Example



Step 1) Estimate forced oscillation frequency Step 2) Estimate $\hat{\gamma}$ by iteration starting from \hat{H}_0 and $\hat{\gamma}_0$ Step 3) Adjust \hat{H} as relevant for effective mitigation

Step 1) Frequency Estimation

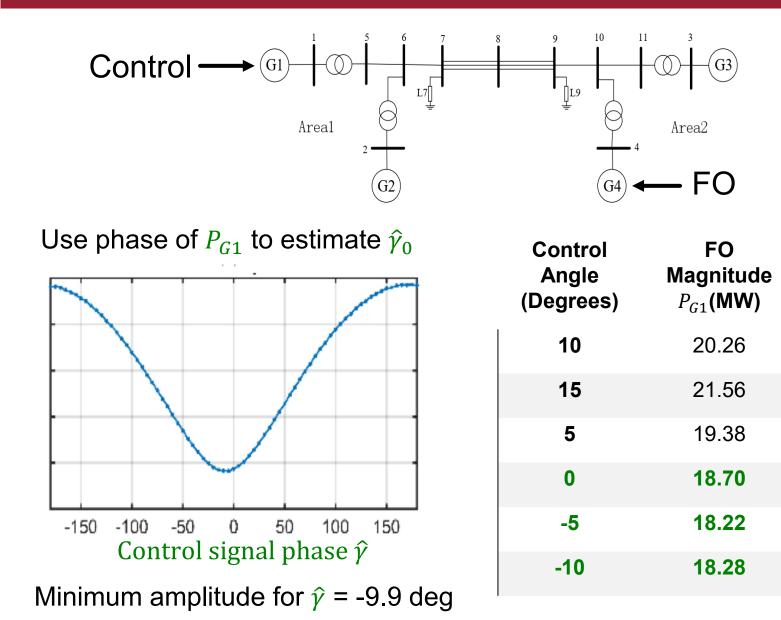


Estimate forced oscillation frequency @ 0.61 Hz

- We can use time-domain (Prony/HTLS/ERA) or frequency domain methods (FFT/PSD)
- Phase-Locked Loop

Method	Estimated Frequency (Hz)
FFT	0.61
Prony	0.61
Matrix Pencil	0.61
HTLS	0.61

Step 2) Phase Estimation



Gradient

Search

Initialize

Flip

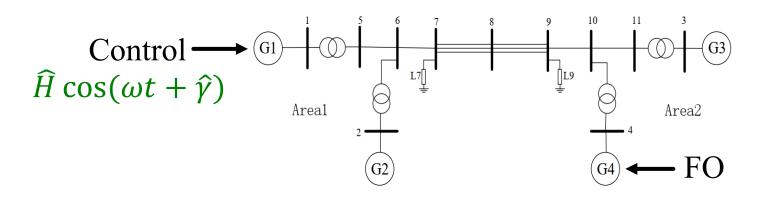
Continue

Continue

Continue

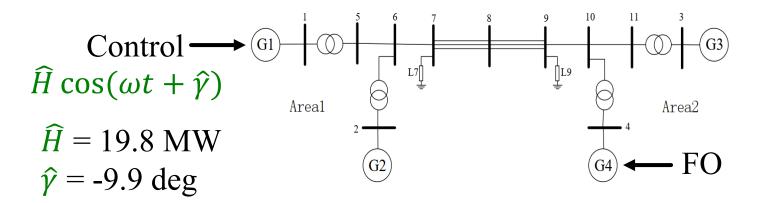
Stop

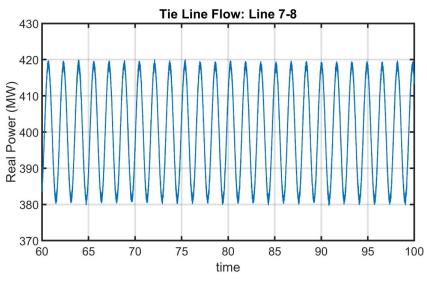
Step 3) Amplitude Estimation



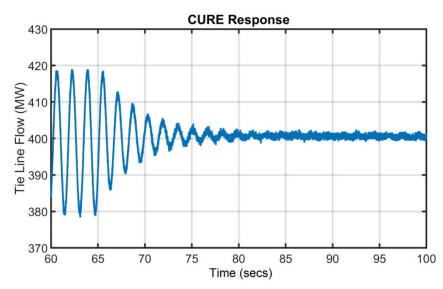
- Choose $\hat{\gamma} = -9.9 \text{ deg}$, and $\hat{H}_0 = 10.4 \text{ MW}$.
- Increase \widehat{H} by $\widehat{\Delta H}$ and estimate the change in tie-line flow oscillation amplitude.
 - 16.2 MW oscillations (a) $\hat{H} = 10.4$ MW
 - 11.2 MW oscillations (a) $\hat{H} = 15.6$ MW
- Using linear extrapolation, estimate $\widehat{\Delta H}$ needed for desired mitigation. $\widehat{H} \approx 19.8$ MW for 0 MW oscillations
- Apply the control with $\hat{H} = 19.8$ MW and $\hat{\gamma} = -9.9$ deg
- Tie-line flow oscillations nearly zero.

Control for Mitigation





Forced Oscillation response



Forced Oscillation and Control (applied @ 65 sec) response

Resonant Forced Oscillation Events

- Many resonant forced oscillations observed in different interconnections.
- Need to understand dominant inter-area modes and track the damping of system inter-area modes
- Inter-area resonance potential risk for operational reliability
- Effective source location algorithms needed
- Controls for mitigation of resonant oscillations need to be developed and tested
- Novel open-loop control proposed

Mani V. Venkatasubramanian (mani@wsu.edu)