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We are replacing the foundation of today’s grid

fuel & synchronous machines renewables & power electronics
— emissions & waste + clean & cheap

+ dispatchable generation — intermittent generation

+ self-synchronization & inertia — no inherent sync. or inertia

* reliable fault ride-through — fragile or no fault ride-through

— slow actuation & physics + fast actuation & flexible control
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Low-inertia concerns are not hypothetical (but seem exaggerated?)
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Synchronous machine inertia & slow turbine can be replaced by

» grid-forming power converters & curtailed renewables or storage
» fast frequency response & virtual inertia (expensive?)

[1] Poolla, GroB, Dorfler: Placement and Implementation of Grid-Forming and Grid-Following Virtual Inertia and Fast Frequency Response, IEEE TPWRS, 2019
[2] Tayyebi, GroR, Anta, Kupzog, Dérfler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020
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The foundation of today’s system operation

Sync. machine frequency dynamics

d
My g;Wk = — dpWk — Pac,k + Pm,k

AVR
d *
J ThgzPmk = —Pm,k + Pr — Kr(wo — wy)

DPmk —> DPack —>

1. system-level model: voltage source behind stator reactance

2. self-synchronization of machines through power flows
Pack & Zj bij (Ox — 05)

3. inertia my, acts as buffer for slow turbine/governor response

4. primary frequency control, voltage regulation, power system stabilizer
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Today: grid-following converter control

0:

T

>

~ P*—Dw—M(‘l—lfw

» model: current source feeding into an infinite AC bus

AC voltage

AV,

» objective: stabilize power source at maximum power point

» primary frequency control & virtual inertia (subject to PLL delay)

4/22



Actual contingencies involving power electronics

BLACK SYSTEM
SOUTH AUSTRALIA
28 SEPTEMBER 2016

1,200 MW Fault Induced-
Solar Photovoltaic
Resource Interruption
Disturbance Report

“Nine of the 13 wind farms “the largest percent- age of
online did not ride through inverter loss (700 MW) was
the six voltage disturbances due to the inverter phase
during the event” lock loop (PLL) "
25% of generation lost 50% of credible cont.
2016: <40% renewable Aug. 2016: 4.5 GW solar
2020: <85%, med. 55% Nov. 2020: 10 GW solar

ERCOT instantaneous wind & PV: <58%, median 38%
Ireland goal for 2030: < 95%, average 70%
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Cartoon summary of grid-forming control

Conceptually, converters can act as AC voltage sources that have to synchronize

image credit: 0. Supponen & M. Colombino 6/22



Cartoon summary of grid-forming control

GFC: converter synchronization through power flows

image credit: O. Supponen & M. Colombino 6/22



Cartoon summary of grid-forming control

GFC: converter synchronization through power flows

Droop control [chandorkar, Divan, Adapa, '93]

wo

d _ *
Wayne Eak = wo + My (Pk — Pac,k)

Pac,k = Zj bri(0r — 05)

p(t) —p

image credit: O. Supponen & M. Colombino 6/22



Overview

Grid-forming control (GFC) of DC/AC power converters

» main principles and control strategies
» stability of dVOC in multi-converter / no-inertia systems

» fast frequency response vs. virtual inertia in low-inertia systems

Open questions & and ongoing work
» adverse interactions: converter control, machine control, & network
» GFC for sources with limited flexibility & hybrid DC/AC systems

» converter current limits and fault response (not today)
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Standard grid-forming VSC control architecture

DC volt. current current voltage grid-form.
control control | — limit i% | control control
Vde
iéc idc 7;sw P’Q A/\ﬁ
+ if i
vae | VSC AV /OO0
_ + + J +
Usw I v Vg

» Assumption: DC source controls DC voltage to constant reference
» GFC measures power injection P,@ (or current i, in a3-frame)
> GFC provides AC voltage reference Zv* =6, ||v*|| = V (or v} in aB-frame)

» inner cascaded current and voltage Pl controllers track AC voltage reference
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Grid-forming converter control approaches

ide
wo
+

vae T=Cae| Gac

p(t) —p"
droop control synchronous machine emulation
+ intuitive & good small-signal performance + (supposedly) backward compatible
— stability & performance certificates — fast converter emulates slow machine

Laf
virtual oscillator control (VOC) dispatchable VOC (dvOCQ)
+ robust & almost globally stable sync + power & voltage specifications
— cannot meet power specifications + strong theoretical guarantees
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dispatchable VOC for
multi-converter systems




dVOC for multi-converter systems

Grid-forming voltage reference dynamics [1]

d L x %
i [:)U 5““] 7)’“+77(R(K)(m12 [ Pr q’i] U — f/ﬁ{,:,\.) + ('U*2 — ||'1)k\|2) Uk )

—a; P

rotation at wq synchronization through physics local amplitude regulation

quantifiable and intuitive stability conditions for multi-converter systems [2]
» ", pi, and q; satisfy AC power flow equations

» power transfer “small enough” compared to network “connectivity”

> increase admittance maxy )| Yir| X time-constant ¢/r = n smaller

» upgrading or adding lines can destabilize the system

» time scale separation can be enforced by control

magnitude (na) > sync () > line currents > volt. PI > curr. PI

[1] GroB, Colombino, Brouillon, Dorfler: The Effect of Transmission-Line Dynamics on Grid-Forming Dispatchable Virtual Oscillator Control, IEEE TCNS, 2019
[2] Suboti¢, GroR, Colombino, Dorfler: A Lyapunov framework for nested dynamical systems on multiple time scales with application to converter-based

power systems, IEEE TAC, 2021
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dvoC for multi-converter systems (cont.)

Almost global stability with inner loops & network dynamics (7-model)

If the stability condition holds, the system is almost globally asymptotically stable
with respect to a limit cycle corresponding to a pre-specified solution of the AC
power-flow equations at a synchronous frequency wy.

microgrid (¢;, = 0, p; = ¢f =0) = averaged VOC  [johnson, Dhople, Krein, "13]
g j k k g
L0 =w o hase
< 0 +n||”k“2 (phase)
Lllorll = =2 o] (Mowll = 22 llol? (magnitude)
dt ul| = _nHkaQ vg|| 4+ mee ( [|vkl| — v*2 g g

transmission system (7, = 0, ||v|| = v*) &~ droop control  [chandorkar, Divan, Adapa, ‘93]

L0~ wo+ % (pk — pr) (phase)
* 1 * o
loell ~ o + —— (g — a) (magnitude)

[1] Colombino, GroR, Dérfler: Global phase and voltage synchronization for power inverters: A decentralized consensus-inspired approach, CDC, 2017
[2] Seo et al.: Dispatchable Virtual Oscillator Control for Decentralized Inverter-dominated Power Systems: Analysis and Experiments, APEC, 2019
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Grid-forming controls exhibit similar performance (for realistic tuning)

— Droop — dVOC — Matching

‘ VSC }ﬂ Power System

ower [p.u.]

07V p,q ; o \ [
m%w — _dw + p*_ P B 5 T s ) ’2‘;', 3 — 35 T 1
V = V*Jr mq (q*f q) E L5 [ Droop — dVOC - Matching
Grid-forming: (P, Q) — (w, V) o [T A \

> sync. through p =~ Y, bks(0k — 6;) ' BT

— Droop — dVOC —— Matching

» virtual inertia m limited by

- DC side energy storage
- DC and AC current limits

Output current [p.u.]

— m typically very small

— Droop — dVOC — Matching

» similar reduced-order models

[1] MIGRATE Deliverable 3.3: New options for existing system services and needs for new system services, 2018 12/22



Grid-forming controls exhibit similar performance (for realistic tuning)

— Droop (250 MW) — dVOC (500 MW) — Matching (1 GW) |

| vSC | Power System

0.V p,q o
| o P
d
mgw = —dw + p*_ p 05 s T 5] i1 i is )
V =V"+my(q"~ q) -
5 - [ Droop (250 MW) — dVOC (500 MW) — Matching (1 GW) |
Grid-forming: (P, Q) — (w, V) ’
> SynC th I’OUgh p= ZJ bk](gk - 97) - 01 0.6 08 1 12 L1 6 L8 2
: ts
» virtual inertia m limited by 2 [ Droop (20 MW) — dVOC (300 MIW) — Matching (1 GW) |

- DCside energy storage —
- DC and AC current limits :

— m typically very small o608 08 1 12

tls)

[—Droop (250 MW) — avoc (500 Mw)

» similar reduced-order models

» main GFC response interoperable I ==

[1] MIGRATE Deliverable 3.3: New options for existing system services and needs for new system services, 2018
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The role of inertia in
low-inertia systems




IEEE 9-bus with one sync. machine and two grid-forming converters

» high-fidelity simulation:
- high-order SM with turbine, AVR, & PSS
- VSC with filter, inner loops, & DC side
- transformer & line dynamics

» tuning: no or negligible virtual inertia

» better performance than all SM case

SM-droop SM-VSM SM-matching [ SM-dVOC all-SMs |

1 1 1 1 1 1 1
70 80 85 90 95 100

@i/ Api| [%]

| | |
35.5 90 95 100
[[Awilloe/|Api] %]

35
|Awilloo/|Ap:| %]

Tayyebi, GroB, Anta, Kupzog, Dorfler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020 13/22



Simplified / qualitative analysis

Simplified frequency dynamics of a two bus system (droop GFC & SM)

> share of GFC relative to overall rating: v € (0, 2]

LOcec = (vdarc) ' b(Osm — Oorc)

d

(1L95M = Wsm
(1 —v)2HLwsm = —b(Osm — Ocrc) + pr — P
T4pr = —pr — (1 = v)dspw

[1] Tayyebi, GroR, Anta, Kupzog, Dorfler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020
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Simplified / qualitative analysis

Simplified frequency dynamics of a two bus system (droop GFC & SM)

> share of GFC relative to overall rating: v € (0, 2]

» change coordinates to relative angle 6 = sm — Ocrc

d%@GFC = (vdorc) " b(Bsm — Ocrc)

d

qi0sm = wsm
(1 —v)2HLwsm = —b(Osu — Ocrc) + pr — pu
T4pr = —pr — (1 = v)dspw

[1] Tayyebi, GroR, Anta, Kupzog, Dorfler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020
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Simplified / qualitative analysis

Simplified frequency dynamics of a two bus system (droop GFC & SM)

> share of GFC relative to overall rating: v € (0, 2]

» change coordinates to relative angle 6 = sm — Ocrc

%0 = Wsm — (VdGFc)71b6
(1-— I/)QH%wSM =—b0+pr —m

T%pT =—pr — (1 —v)dsmw

[1] Tayyebi, GroR, Anta, Kupzog, Dorfler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020
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Simplified / qualitative analysis

Simplified frequency dynamics of a two bus system (droop GFC & SM)
> share of GFC relative to overall rating: v € (0, 2]
» change coordinates to relative angle 6 = sm — Ocrc
» Hand 7 are large — eliminate “fast” angle dynamics (COI model)

%5 = Wsm — (VdGFc)71b6

(1-— V)2H%wgm =—b0+pr —m

T%pT =—pr — (1 —v)dsmw

[1] Tayyebi, GroR, Anta, Kupzog, Dorfler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020
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Simplified / qualitative analysis

Simplified frequency dynamics of a two bus system (droop GFC & SM)
> share of GFC relative to overall rating: v € (0, 2]
» change coordinates to relative angle 6 = sm — Ocrc

» Hand 7 are large — eliminate “fast” angle dynamics (COI model)

T
O 3sms
O 1 SM & 2 GFCS (pax = )

1 SM & 2 GFCS (puax = 1.2 pu)

(1 — V)2H(%L«JSM

vdsrcwsm + pr — pi

T%pT = —Pr— (1 - V)dSMw 100 |

Frequnecy nadir [%]

50 al

| I I I
40 60 80 100

RoCoF [%]

= Fast frequency response replaces slow SM turbine/governor

[1] Tayyebi, GroR, Anta, Kupzog, Dorfler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020
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Too good to be true?




Simplified model of Quebec region

north-west region north-east region
SM-GFC 1 SM-GFC 2 SM-GFC3 SM-GFC4 SM-GFC6 SM-GFC 7
5.5GW 2.2GW 0.2GW 2.7GW 5.5GW 5GW

5GW Boston region
SM-GFC 5

Montreal region

Synchronous machines
> 8-th order model
» hydraulic turbine
» governor with 5% droop
> AVR & MB-PSS (type 4B)

Two-level VSCs
» Aggregate of many VSC modules
» P-f droop control

» DC source (limits & resp. time)

Definition: integration level

> iz Sercy
>y (Sorc; + Ssm;)

n=

[1] A. Crivellaro, A. Tayyebi, C. Gavriluta, D. GroB, A. Anta, F. Kupzog, F. Dorfler: Beyond low-inertia systems: Massive integration of
grid-forming power converters in transmission grids, best paper award at IEEE PES GM 2020
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Uniform transition from 100% SMs to 100% grid-forming VSCs

— 0% GFC — 10% GFC  20% GFC ——30% GFC —— 40% GFC
—50% GFC 60% GFC——70% GFC 80% GFC 90% GFC

e ] Loss of 5.5 GW (SM 1): 0 > n > 0.9
B

» max. contingency for small n

wen [Hz]

» frequency of SM 2 for different n

» increased n — better nadir

» PSS retuning for n > 0.8

Time [

» multi-machine system

- turbine too slow to suppress frequency oscillations
- PSS suppresses frequency oscillations through voltage control
» multi-machine multi-converter system

- PSS lead-lag compensator acts on fast GFC response

[1] A. Crivellaro, A. Tayyebi, C. Gavriluta, D. GroB, A. Anta, F. Kupzog, F. Dérfler: Beyond low-inertia systems: Massive integration of
grid-forming power converters in transmission grids, IEEE PES GM 2020

[2] Markovic, Stanojev, Aristidou, Vrettos, Callaway, Hug: Understanding Small-Signal Stability of Low-Inertia Systems, IEEE TPWRS, 2021
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Frequency metrics & protection

—=-SM 1, 7T=01-=SM5 T=0.1 SM6, T =0.1
—e— SM 1,T'= 0.5 -~ SM 5, T = 0.5 SM 6, T =0.5

Frequency nadir & averaged RoCoF

100 f--------- L e e B
|
|

‘ » RoCoF averaged over T={0.1,0.5}
sor |\ 1 » SM1and SM 6 far from event
00| I\ \ | + T'= 0.1: RoCoF deteriorates
‘ - T = 0.5: RoCoF improves
» SM 5 adjacent to event

. - largest absolute RoCoF

, . \ | . . L.
100 120 140 160 180 200 220 240 260 280 - Insensitiveto T
normalized RoCoF ([]|/[c?]) (%)

40+

201 Sl

normalized Nadir (||Aw?]loo/[|Aw?|o0) [%]

2

» GFC freq. show no patterns
Nadir and RoCoF for a loss of 2 GW (HVDC link)

» large RoCoF not problematic for GFCs (no rotating parts)
» potentially problematic for machines and grid-following converters

» RoCoF not a reliable protection signal: inertia emulation vs. updated protection?
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GFC for sources with
limited flexibility &
hybrid DC/AC systems




Standard grid-forming VSC control architecture

DC volt. current current voltage grid-form.
control control | — limit z} control control
Vdc
Z-QC idc isw P7Q A/\ﬁ
+ if i
vde | VSC AAVAY; T000
_ + + J +
Vsw I v

Vg

» cascaded PI controllers track voltage reference Zv* =6, |[v*|| = V

» AC current limited by current control & low-level protection
Limitations of state-of-the art grid-forming control

» overloaded DC source — DC & AC voltage collapse

» grid-forming control cut off by current limiter — instability
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Future systems: DC, AC, and sources with limited flexibility

High voltage DC transmission

main grid HVDC cable offshore wind
F—@——— )—o —
/\/ =

)\}« control
AC-follow. DC-form. DC-follow. AC-form.

= lo—@g o V] )u control

» mix of grid-forming and grid-following converters
» assignment of roles is non-trivial in meshed networks

Flywheel or wind-turbine with back-to-back converter

AC-follow. DC-form. DC-follow. Torque

» how to leverage the grid-forming capabilities
» roles may be different at different operating points
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Simultaneous AC and DC grid-forming control for DC/AC converters

» ac nodes and edges (red)
» dc nodes and edges (black)

o . ® » converter nodes (red/black)

Nodes categorized by frequency / DC voltage damping capabilities

» insignificant: sync. condenser, wind-turbine/PV (MPPT), flywheel, ultracapacitor

» significant: wind-turbine/PV (curtailed), sync. machine with turbine/governor

Simultaneous AC and DC grid-forming control
W —wo = mp(p;c - pac) + mdc(Udc - Uéc)

» maps power imbalance signal between AC (w — wo) and DC (vgc — v5c)

» P-fdroop term provides angle damping (and P-f droop if vyc ~ vj.)

» stability conditions on AC connections between nodes with/without damping
» cover most realistic topologies (MTDC, wind/PV farms, B2B flywheels, .. .)
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Case study: overloaded PV (IEEE 9-bus with 1 SM & 2 VSCs)

vde [pu]
=}
>

o
—
o
w
IS
ot
L e s W

ide [pu]
—

large load step (0.9 pu) at bus 7

» curtailed PV (above MPP volt.):
0.5 1 - prop. DC volt. control with saturation
» droop control overloads PV:

Pac [})11]

%1 2 3 4 5 ¢ S
- DCvolt. collapse & instabilityin < 1s

50.21 i T [—sM—vsc1 ]|

Z 50k .
3 498 | 1
49.6 ‘ ‘ ‘ i | d

1 2 3 4 5 6

t[s|
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Case study: overloaded PV (IEEE 9-bus with 1 SM & 2 VSCs)

vae [pu]

0.99

0.98
0

1.2

ige [pu]

1.2

Pac [pu]
—

1.1

0.9 f
0.8%

large load step (0.9 pu) at bus 7

» curtailed PV (above MPP volt.):

- prop. DC volt. control with saturation
» droop control overloads PV:

- DCvolt. collapse & instability in < 1's
» simultaneous DC & AC grid-forming

- PV limited: “sync. condenser”
- otherwise: primary freq. control
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Take home messages

Loss of rotational inertia (& slow turbines)
» can be mitigated by fast response of grid-forming converters
» 100% GFC system is least problematic (from frequency stability standpoint)

» mix of SMs, GFL, GFC: instability due to adverse interactions across
time-scales and different devices

Frequency stability and RoCoF protection challenges
» GFCs have no rotating parts: high RoCoF no longer indicates a problem

» expensive inertia emulation vs. protection redesign?

Current work & outlook
» GFC for sources with limited flexibility & hybrid DC/AC systems
» simultaneous AC and DC grid-forming control for VSCs and MMCs
» fault response & AC current limits of GFCs (PSERC-S95 with M. Saeedifard)
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Questions?

Dominic GrofR

dominic.gross@wisc.edu



