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Motivation

Dramatic increase of extreme events

BILLION-DOLLAR DISASTERS [ttt
WEATHER & CLIMATE EVENTS

* In the United States, extreme
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T . ‘ more power outages from 2010-2019
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* Weather-related power outages cost
Americans $20-55 billion annually 1.

* Utility customers experienced 1.33

I TROPICS ..

£ billion outage hours in 2020, up 73%
» from roughly 770 million in 2019,
according to PowerOutage.US, an
aggregator of utility blackout data.

climatecentral.org

Executive Office of the President, Economic Benefits of Increasing Electric Grid Resilience to Weather Outages, (August 2013)


https://medialibrary.climatecentral.org/resources/billion-dollar-disasters-by-decade-2020

Motivation

U.S. POWER OUTAGES

— NON WEATHER-RELATED

= WEATHER-RELATED
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Billion-Dollar Disasters by Decade | Climate Matters (climatecentral.or

AN

Number of outages affecting more than 50k customers

2000-2009 Weather

2010-2019 Weather

Region Change %
Related Outages Related Outages

[Northeast 127 329 159%
Southwest 24 51 113%
Southern Great Plains 42 88 110%
[Northwest 17 32 88%
Southeast 209 282 35%
[Midwest 131 203 55%

HI & PR 6 3 -50%
|Northern Great Plains 2 2 0%

https://medialibrary.climatecentral.org/resources/power-outages

Severe power outages caused by extreme

weather events: (Most Recent)

* 2019 California power shutoffs: 3
million customers

* Texas Power Crisis (2021): 5 million
customers (at its peak)

* Hurricane Ida (2021): 1.2 million

custometrs

Increasing frequency of Extreme Weather
Events:

* 1980 to 2020 - average 7.1 events/year,

* 2016 to 2020 - average 16.2 events/year

Increasing average annual cost of
disasters.


https://www.ncdc.noaa.gov/billions/summary-stats
https://medialibrary.climatecentral.org/resources/billion-dollar-disasters-by-decade-2020

Resilience: Power Distribution Systems

Outages due to damage: Transformers, utility poles, overhead distribution lines are all
vulnerable to severe weather, particularly high winds, heavy rain, ice, snow.

Outages due to public safety power shutoffs: Extreme weather events (wildfire risk, increased
demand due to heatwave or cold front) stressing the supply system, PSPS disrupting the
power supply to millions of customers.

Avista prepares for dry conditions,
planned outages during Inland

Northwest heaf wave Washington firefighters rein in 20,000 acre wildfire as
June 25, 2021 state dodges mass power outages

By Tim Gruver | The Center Square  Jun 29, 2021

Green

s A Wildfire Is Pushing California
Toward the Brink of Blackouts

By Lynn Doan and Naureen S Malik

July 10, 2021, 6:31 PM PDT Updated on July 11, 2021, 6:18 PM PDT Need an expedited incorporation Of I'eSilienCC in

the aging and stressed power distribution systems



Resilient Distribution Systems

How to keep the lights on?

An Example of Improving Resilience to Extreme Event

* Grid hardening: vegetation
management, undergrounding lines

* Smart grid investments — added
sensors, communication, decision-
support systems

* Non-traditional ways of operating
grid:
* Networked microgrids

* Demand-side flexibility to better
manage rare contingencies

* Planned rolling/rotating
blackouts Intentional Islanding using Local Generation Resources to

support intentional islands.



What is needed? — Plan and Operate for Resilience
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Long-term planning:

*  Where and what lines/poles to harden?

* Where to place new devices for added flexibility: tie switches, DGs, storage?

* How prioritize different long-term planning activities?



What is needed? — Plan and Operate for Resilience
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Operational planning (preparation for upcoming event):

* Planned rolling/rotating blackouts, proactive islanding, plan mobile energy resources
* Plan disaster recovery — dispatch crew, line and poles

* Need to capture time-varying impacts of an upcoming event.



What is needed? — Plan and Operate for Resilience
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* These solutions cost a lot and planning for rare events need to justify the cost

* These solutions need to reflect the value they provide in mitigating the risks imposed by the
High Impact Low Probability (HILP) events



Distribution System Resilience Modeling and Optimization

A framework for planning distribution

systems for resilience

|

Non-traditional ways of Attention to Modeling and Computational
operating grid HILP events Challenges

Distribution grid planning in response to HILP Events:

* Infrastructural Risk modeling: Characterize the impacts of HILP events on the power grid
infrastructure

* Risk-averse optimization models for Long-term and Operational planning: Add
operational flexibility to the grid to improve their response during HILP events

10
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Event modeling

Overall Approach - HILP Events and Resilience
(Power Distribution Systems)

Regional
wind profile

\ Component-level fragility )

P, ()

Failurre probability

Wind Speed (m/s)

e One possible system damage scenario
Fragility curve o How to quantify the impacts or highest loses?
e Probabilistic risk-measure

Wind Speed (m/s)

\ Probabilistic Loss Function ,
rud))

Probability density function

Loss function U(I) in
MWh

CVaR: Optimize
for this areas

PDF for Loss function using
Monte-Carlo simulations

o 1 Possible remedial schemes (non-traditional ways of grid operation)



Resilience Planning: Two-stage Stochastic Program

Optimize CVaR metric - Resilience planning of power distribution system

A two-stage stochastic optimization formulation

* Stage 1 (pre-event) planning decisions - line hardening, DG placement, etc. (Sampling and
impact assessment via simulation framework)

* Stage 2 (post-event) operational decisions - DG-assisted restoration, intentional islanding
(solve optimal coordination problem)

Substation Substation

*—o<—0—o ——0— 90— i

Original distribution system Stage 1: pre-event planning Stage 2: post-event operations

(._. (o—oob é (‘—oo—o @

12



Model and Quantify

How to characterize High-impact and Low-probability (HILP)
events for their impacts on the power grid infrastructure?



Risk-based Resilience Quantification

0.08 LN

How to characterize High-impact and Low- N = Exeme
probability (HILP) events for their impacts on oot/ - - - Normal
physical infrastructure?

Event

. . . Probabilit
Modeling the spatio-temporal risks of an extreme Y

event on the resilience of the critical

00217
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* Shiva Poudel, Anamika Dubey, and Anjan Bose, “Risk-based Probabilistic Quantification of Power Distribution System Operational Resilience,” IEEE Systems Journal on Aug 2019.
* Shuva Paul, Shiva Poudel, A. Dubey, “Planning for Resilient Power Distribution Systems using Risk-Based Quantification and Q-Learning,” accepted, IEEE PES GM 2021.



Risk-based Resilience Quantification

Define two risk-based resilience metrics A Performance Loss Function

1. Value-at-risk (VaR,): maximum loss expected
over a given time period for a specified degree
of confidence, «.

Probability density function p(/)

) Maximum
L VaR loss
WO = [ el
U(l)<¢ H w
HILP events
Vo mintc £ B () = ) Ll [ o,

2. Conditional value-at-risk (CVaR,): expected system loss (MWh) due to the top (1 — a)%

of highest impact events.
> measures the resilience of the system as impacted by HILP events.

CVaR :(1—@,)—1/ Ul p(1) dl.
U(1)>VaR.,

R. T. Rockafellar and S. Uryasev,"Optimization of conditional value-at-risk" Journal of Risk 2 (2000), 493-517
N. Noyan, Risk-averse two-stage stochastic programming with an application to disaster management, Computers & Operations Research, vol. 39, no. 3, pg. 541-559, Mar. 201215



Quantifying Resilience: Risk Modeling

A simulation-based
approach

Data generation

* Opensource data for
event modeling

* Hypothetical fragility
curves

* Monte-Carlo
simulations

Probabilistic quantification
of the impacts (risks)

Latitude (W)

Failurre probability
=
E

/ g PDF for Loss function using
A\ : g Monte-Carlo simulations
station b=
. | z
{ | z Va Maximum
| £
' y | = R l-a loss
" 3 » 900kvar = <
N 900kvhE (controlled) | = HILP
\ L v = =, events
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| e
-

Loss function U(I) in

Fragility curve

Impact Assessment
(Fragility Curves)

Wind Speed (m/s)

A . e O | Probabilistic Loss'— -
; - @ Capacitor 7 p(l'(I)) \

|
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|
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* Shiva Poudel, Anamika Dubey, and Anjan Bose, “Risk-based Probabilistic Quantification of Power Distribution System Operational Resilience,” IEEE Systems Journal on Aug 2019.

* Shuva Paul, Shiva Poudel, A. Dubey, “Planning for Resilient Power Distribution Systems using Risk-Based Quantification and Q-Learning,” accepted, IEEE PES GM 2021.
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Probabilistic Event and System Performance loss

» An event is characterized by two parameters:

> intensity of the event, I, modeled as a random variable and

> the probability of its occurrence, p(/)

» System performance loss when impacted by an event /, U(/)

> function of loss, L(/) and time of the event, t(/)
> U(l) = fIL(]), t(1)]; in MWh

: , R .
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M. Panteli and P. Mancarella, “The grid: Stronger, bigger, smarter?: Presenting a conceptual framework of power system resilience,” IEEE Power Energy Mag., vol. 13, no. 3, pp. 58—

66, May/Jun. 2015



Component Level Impact Model

» Probabilistic component-level fragility curve
» Generate component damage scenarios
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System-level Impact Model

» System performance: A simplified resilience curve

Phases of resilience curve

I II II v

» Initial system loss
> Phase | (t,e — te)

[  Event Progress

Post event
I ge graded state

» Damage assessment
> Phase Il (t, — tpe)

[IT Restorative state

|
|
=4
_ .. : I
» Restoration and active islanding scheme | IV Recovery
~ Phase Ill (t;, —t f — - - >
( Ir r) t, L Ly t L, L, Time
Base network ~ L..... Smart network

Robust network (Improved restoration)

» Calculate system performance loss: Area under the curve
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Simulated Results

|IEEE 123-bus test feeder
Smart network: tie switches and DGs
Robust network: hardening of lines

Monte-Carlo simulations: 1000 trials
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Failure probability=0.082
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=
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Number of trials Number of trials
11
ar : 80
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Hardened Sectionalizing e Distributed
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Results

* The approach can incorporate planning measures in place to reduce the risks of HILP events
* Used for Resilience oriented design of power distribution system: example case of optimal
line hardening Q-learning framework based on risk metrics

Phases TABLE 11 . . .
L VAR AND CVAR FOR DIFFERENT CASES WITH o = 95% —=—Loss function(MWh)
h
1 Test case: IEEE 123-bus VaR ,
" . |
S.No Network VaR,(MWh) CVaR,(MWh) X HILP events
1 Base Network 61.10 68.22 X l-ax i
2 Smart Network 52.53 56.73 ! i
3 Robust Network 50.25 57.52 : !
2 | e "0 0.64 1818 6431 6900 7314
1 '| : Il Restorative state Base network 1 ,
L L L 1, L 1
E E E V' Recovery 0 0.54 15.75 55.31 56.7 61.06
]
4 + + > Smart network : 1
L L L, Time . . . L . 1
Base network  wewee. Smart network 0 0.32 10.71 5237 5857 6134
o — Robust network (Improved restoration) Robust network

Figure 3: (a) Approximated resilience curve for an event. The different colored lines correspond to effects of
proactive planning: (1) Base network - does not include any proactive planning measure; (2) Smart network - includes
DERs to support intentional islands; (3) Robust network - includes hardening of the distribution lines. (b) System
performance loss (in MWh) during extreme wind for base, smart, and robust network.

Shiva Poudel, Anamika Dubey, and Anjan Bose, “Risk-based Probabilistic Quantification of Power Distribution System Operational Resilience,” IEEE Systems Journal, Aug 2019.
21



Resilience Metric at the Bulk Grid Level

Large geographic area, need to capture time-varying effects of the extreme event, use the time-
varying impact model for operational planning over multiple time-petiod

Model

S

Maximum Sustained Wind
Speed [kt)

wylbtf = — = ===
|
“ o Few F';.‘. X
(a) Hurricane Outer Distance to
Boundary (b) Hurricane Eye (nm)

Hurricane (Static) Gradient Wind Field at Landfall

= Synthesized Hurricana
===== Hurricane Katrina (2005]

haxirmum Sustained Wind
Specd [m)fs]

o 100 200 300 A0
DEstance o Hurricane Eyve [km)

()

P. Javanbakht, S. Mohagheghi, “A risk-averse security-constrained optimal power flow for a power grid subject to hurricanes”, Electric Power Systems Research, Nov. 2014



Resilience Metric at the Bulk Grid Level: Simulation

Hurricane Model - Hurricane parameters from real data: National Oceanic and Atmospheric
Administration® parameters are randomly sampled to generate a single scenario of Hurricane?

Power System Model - Texas 2000 bus synthetic model is used as a test case’ to evaluate system-level

impacts

Time-varying probabilistic systems loss is calculated as hurricane eye moves in consecutive time steps

1. http://www.aoml.noaa.gov/hrd/data sub/us history.html
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2. P.Javanbakht, S. Mohagheghi, “A risk-averse security-constrained optimal power flow for a power grid subject to hurricanes”, Electric Power Systems Research, Nov. 2014

3. A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye and T. J. Overbye, "Grid Structural Characteristics as Validation Criteria for Synthetic Networks," in IEEE Transactions on Power

Systems, vol. 32, no. 4, pp. 3258-3265, July 2017
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Impact Modeling and Resilience Metric for T&D System

* Co-simulation methods to evaluate the impacts of extreme events on T&D systems

* Minimum exchange of data between bulk grid and distribution system operatotrs, only
need to know what lines/buses may be impacted and with what probability

* Currently, working on integrating synthetic Tx2000 bus and synthetic Austin
distribution feeder available at Electric Grid Test Case Repository (tamu.edu)

Synthetic 2000-bus 307,236 end-use customers with 160
power system test case high-voltage buses, 448 feeders

A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye and T. J. Overbye, "Grid Structural Characteristics as Validation Criteria for Synthetic Networks," in IEEE Transactions on Power Systems, vol.
32, no. 4, pp. 3258-3265, July 2017


https://electricgrids.engr.tamu.edu/

Risk-averse Optimization

How to economically add operational flexibility to the grid to improve their
response during extreme weather events?



Resilience Planning

How to economically add operational flexibility to the grid to improve their

response during extreme weather events?

Our contributions:

* Risk-averse framework for resource
planning to manage disruptions in critical
infrastructure system

* Long-term planning solutions to identify
the locations for system upgrades for
improved resilience

* A CVaR-based formulation to minimize the
highest impacts of low-probability events

* Tradeoff among planning measures -
backup resources vs. Line hardening

Substation

Example: Where to place DGs, which lines to
harden? 9)

: Planning Decisions
/O (location and size/capacity)
@

g)) gDD Distributed Energy

| Resource

SDD 0® Tie switch
¢

®—® Sectionalizing switch

e Hardened lines




Stochastic Optimization

* A framework for modeling any optimization problem that involves uncertainty
* Two-stage Stochastic Program: A large number of potential scenarios,

* Stage I: Make some advance decisions (plan ahead),

* Stage II: Observe the actual input scenario, Take recourse actions in response to the
realization of the random variables and the first stage decisions

Stage 1 (pre-event)(x: first-stage decision Stage 2 (post-event) after realizing
variables) - should not depend on future scenario, we take recourse decisions,
observation y (second stage decision variables)
| minc’x + E[Q(x, &)] <(Fixed)
subject to,
Ax > b Q(x,§) = ming"y

subject to,

S
E[QC, )] = ) psQ(§s) .
s=1 x+ Wy <

Schultz, R., Tiedemann, S. Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse. Math. Program. 105, 365-386 (2006).



Risk-averse Optimization

Conditional value at risk in the objective :
* atradeoff parameter A can differentiate the risk-neutral vs risk-averse objective

tradeoff for

minc'x+ (1 - A)E,Q(& x) + ACVaR,(Q(&, x)) — risk-neutral vs
x risk-averse

where,

CVaR,(Z) = nienﬂg {n =+ ﬁ[E(max([Z —nl, 0)}

Frequency

where, n = value-at-risk

Loss

Mean-risk function with CVaR,, as risk measure: gleig{]E[f(X, w)] + ACVaR,[f (x, w)]}

where, 4 is the non-negative trade-off coefficient known as the risk coefficient

29



Risk-averse vs Risk-neutral

* Higher the value of A, higher is the inclination towards risk aversion

* due to changing trade-off between expectation and CVaR,, higher A gives higher expected total cost
and hence lower CVaR,,

flx,w) = cTx + E(Q(x,w))

4 risk coefficient vs CVaR for a=0.95
13 x 10 | | a [

% 10%

risk coefficient vs mean-risk value for «=0.95
T T T T
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1.1

conditional value at risk
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= cTx + E(Q(x,w))
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g
S
—/
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S
oo
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Two-Stage Risk-averse Stochastic Program - Distribution
System Planning

Overall problem: Identify optimal locations for feeder upgrades given the PDF of weather event,
component fragility curves and load criticality to minimize CVaR.

Stage 1 (Decision Variables) — location Stage 2 (Decision Variables) — How to restore the

and sizes of planning decisions (DGs, network for a give realization of outages/fault?
switches, line hardening)

Substation
Substation

Substation

Need to be optimal for possible realization of .
fault scenarios Fault scenario 1 Fault scenario 2

1 | |




Stage 2 Problem (Inner loop Optimization Problems)

* Inner loop optimization problems
* Optimal power flow problems

. Require optimal coordination of all assets for a given realization of extreme weather
event.

* Require solving difficult nonlinear optimization problem at the distribution level for
feeder restoration

Optimal distribution
system restoration

< bation | —

Substation

Fault scenario



Inner loop optimization problems

Optimal Coordination (of controllable assets) for a given
Realization of Extreme Event

29 @60
@ 456MW
243MVar
251 T
234 9 26

264

Inner loop Optimization Problem (solved for O N R E 2 g
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S Poudel and A Dubey, “Critical Load Restoration using Distributed Energy Resources for Resilient Power Distribution System,” IEEE Transactions on Power Systems, Aug 2018
S. Poudel, A. Dubey, P. Sharma, and K. P. Schneider, “Advanced FLISR with Intentional Islanding Operations in an ADMS Environment Using GridAPPS-D,” IEEE Access, May 2020.
S Poudel, A Dubey, and K P. Schneider, “A Generalized Framework for Service Restoration in a Resilient Power Distribution System,” IEEE Systems Journal, Aug 2020.

S Poudel and A Dubey, “A Two-Stage Framework for Service Restoration of Power Distribution Systems,” IET Smart Grid, Jan 2021. 33
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Inner loop optimization problems

Optimal Coordination (of controllable assets) for a given
Realization of Extreme Even*
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R. Sadnan and A. Dubey, “Distributed Optimization using Reduced Network Equivalents for Radial Power Distribution Systems,” IEEE Transactions on Power Systems, Jan 2021
R. Sadnan, N. Gray, A. Dubey, and A. Bose, “Distributed Optimization for Power Distribution Systems with Cyber-Physical Co-simulation,” IEEE PES GM 2021.
R. Sadnan, A. Dubey, “Real-Time Distributed Control of Smart Inverters for Network-level Optimization,” IEEE SmartGridComm 2020, Nov. 11-12, 2020, virtual format.

R Sadnan, T Asaki, and A Dubey, “Online Distributed Optimization in Radial Power Distribution Systems: Closed-Form Expressions,” IEEE SmartGridComm 2021.



Resilient Restoration: GridAPPS-D Platform

*GridAPPS-D — open-source advanced distribution management platform (real-time operational environment )
Application to restore power system using distributed generators (deployed: https://gridappsd-

restoration.readthedocs.io/en/latest/

—— GridAPPS-D

W I 474200 [ stion ' SUBY FLOW (MAGNITUDE)

DIESEL GEN (MAGNITUDE)

Samulation Statuz 88 FATAL | ERROR | @ WARN | @ INFO | DEBUG | @ TRACE

4 DEBUGI: sending TIME_REQUEST ~f Y21nnannnann nanageconds
— — 2l e & —
4+ DEBUGT: time_window expired

S. Poudel, A. Dubey, P. Sharma, and Kevin P. Schneider, “Advanced FLISR with Intentional Islanding Operations in an ADMS Environment Using GridAPPS-D,” IEEE Access, May 2020
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Two-Stage Risk-averse Stochastic Program - Distribution
System Planning

Overall problem: Identify optimal locations for feeder upgrades given the PDF of weather event,
component fragility curves and load criticality to minimize CVaR.

Stage 1 (Decision Variables) — location Stage 2 (Decision Variables) — How to restore the
and sizes of planning decisions (DGs, network for a give realization of outages/fault
switches, line hardening)

Substation

Substation Substation

o}} (DS SOY S é

Need to be optimal for possible realization of _
fault scenarios Fault scenario 1 Fault scenario 2



Two-Stage Risk-averse Stochastic Program for Distribution
System Planning (First Stage)

Stage 1 (Decision Variables) — location min Z Lo 4+ (1= NE(Q(8, &) + ACVaR,(Q(6, E))
and sizes of planning decisions (DGs, i€V

switches, line hardening) where,

gD) ('L — 5,;DG X IBQ'.
: Stochastic optimization Q(6,&)) = > 1eQ(6,6)
with mixed-integer S
7 5% Y g recourse CVaR(Q(3,&)) =1+ —— Z PV
5 e

— 0 Subject to:
2' ! O <_L' 5’5’ E 5?';10.:1:

. . . 6P € {0,1}
Need to be optimal for possible realization of |

fault scenarios
nelk



Two-Stage Risk-averse Stochastic Program for Distribution
System Planning (Second Stage)

Stage 2 (Decision Variables) — How to optimally restore the
network for a give realization of outages/fault

For each scenario

Objective function:

e Maximize the amount of load restored

* Minimize the cost of switching

Constraints
* Connectivity constraints
e Switch and load decision
* Radial operation
* Operational constraints
* Power flow and voltage constraints
* Network operating constraints
* DG limit constraints

Mixed-integer linear
program

Maximize:
> Y swrh @
i€Vg ¢C{a,b,c}
Subject to: 8 <vi, VieVe (5a)
Si = Vi, Vi€ Varea\Vs- (5b)
Z Pe=38; P+ Z P, (6a)
e:(t1,7)CE e:(7,1)CE
Y 0.=380,;+ Y O, (6b)
e:(1,7)CE e:(7,5)CE
L" — lr; — -)(i.- l,n T ‘: Q, )- y‘;," = ‘C’“’u“,‘\(‘t‘f‘, U ‘t‘“} ‘(’C)
Vi = agV;", (7a)
Uj = A®U;, Ve:(i,j) € &Ex. (7b)
l/:v;xp,: - “""l”'.‘(,"::;,'.:1"'('x" (8)
I"l,'””” < lv' < l'll"””x. .V‘I c 1/‘4“,1, (())
(P.)* +(Q,)* < (s’) Ve € Earea\Es- (10)
-V3 (P. +S.) <0, < —V3 (P. - 8.),
-V3/28.<Q. <V3/28., (11)
V8 (Pi—8:) <0, <VS (Pat8:), Ve€Euras\Es.
l)' < PIHIUI Ve C “‘I‘ d- (|2)



Two-stage Problem Formulation in Extensive form

n N
g, y,m,v) = min(1 +2) z c'; + z Ps z z WisSisPls + 4| 1+ —z pivi
=1 =

eV ¢€{a,b,c}

- 1
g(X,y,n,V) = rypei}?(l‘k/‘l)chai‘l'ln'l'EpsZ 2 Wi,SSlSPfls-l_)' 1—612 PsVs
[ = s=1 i€V ¢€{a,b,c} =

Restored Load \

(demand — IE z Wi,sSlsPLdl)s
iev ¢efa,b,c}

Overall Loss

|

Subject to,

v = (demand — lz Z
iev ¢€efa,b,c}

R >0 total prioritized load restored in scenario s
n € y Vi 2 U,

after solving the optimal restoration problem
for the scenario s (inner loop optimization)

X,y €EZ, XR,



Solving the two-stage problem: Methods and tools

All methods convert stochastic problem to a deterministic problem

* Sampling-based approaches: Extensive form, create multiple copies of second
stage problem, solve a large single-stage deterministic optimization problem,
most accurate, scenario selection is crucial

* Progressive hedging: relax non anticipativity constraint, primal and dual of
convex stochastic problems, equivalent to alternating direction method of
multipliers (ADMM), fast algorithm — parallelizable

* Stochastic Dual Dynamic Programming: Great in a multi-stage setting, stage-
wise decomposition of the problem



Solution Approach

ISampling and system-level impacts 2Scenario selection 3Two-stage stochastic optimization
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Preliminary Results: Planning Decision Tradeoffs

1. Increase in number of DGs for different risk factor, A
2. Increase in total size of DGs for different risk factor, A

0.06 3500
So0s . 2™
32 29 115 118 E 004l / \ ;5 2500 |
33 30 z / S 2000}
31 28 é 0.03 ,I z 1500
25 = = I
” 26 < ;E 0.02 ,/ \\ %’1000 - ,
23 ﬂe- 0.014 \ : 500 ¢ ’I — — average_loss
N / failure probability
24 i . . B o E—=== : : : -
21 ’ 10 20 30 40 50 10 20 30 40
2 Wind speed (m/s) windspeed m/s
" 0.06 — Expected loss = 1027.359 kW
Base case, Value-at-risk = 3414.6 kW
g No DGs . Conditional value-at-risk = 3466.13 kW
|
2@ 10 I
p 0.04 - :
}—/ . © <
125 = S
bstati = A
Substation —g 0.03 L % CT’:;
3 5 6 ” @ EE %
16 4 A~ s >
) 0.02 | L9
Possible DG location @&——@ Tie switches @——@ Sectionalizing switches - :
. . I
Test cases (Planning tradeoffs for risk-averse vs risk-neutral cases): 0.01 - !
|
I
|

AL

—

o
%

o
=N

<
N

e
)

(=}

1

failure probability in percentage

86.45 86.575 86.59 415.51 2146.6 3270.5 3471.6 3483.9 3486.7 3487.9

Load loss (kW)



0.06

Preliminary Results: Planning Decision Tradeoffs
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After placing DGs: Sum of DG size = 900 kW
 total possible loss = 3490 kW

* the number of scenarios that have loss above
3000 kW were recorded

no restoration = 27027

risk neutral (A = 0) = 23570
mean-risk (1 = 0.5) =23494
risk-averse (A = 1) =23270

A = 0 (risk-neutral)

A = 0.5 (mean-risk)

A = 1 (risk-averse)

VAR 3210 3210 3210
CVaR 3356.455 3352.535 3352.5352
Expected value 720.2485 719.27913 731.7657
DG output Z[39] Z[95] Z[122] Z[39] Z[95] Z[122] Z[39] Z[95] Z[122]
40 740 120 40 720 140 60 405 435




Preliminary Results: Planning Decision Tradeoffs

Sum of DG size =900 kW
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Preliminary Results: Planning Decision Tradeoffs

A = 0 (risk-neutral)

A = 0.5 (mean-risk)

A = 1 (risk-averse)
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Ongoing and Future Work

* Risk-neutral vs. Risk-averse Planning Tradeoffs:

* Evaluation of tradeoffs for several combination of planning activities include line hardening,
switch placement and DG sizing and placement.

* The presented formulation is generic and problem complexity does not significantly increase
with the increase in the number of planning decisions for a given distribution feeder.

* Scaling for lager feeders:

* Extensive form leads to a very large-scale mixed-integer linear program, Progressive hedging
results in large optimality gap as the problem is non-convex

* We investigated the application of solving the extensive form and use of progressive hedging
techniques for a small 123-bus distribution system

* Currently working on value-function approximation with simulation-based framework to
scale the problem for large networks

* Collaboration with local utility Avista on data-driven analysis



Ongoing and Future Work

Risk-modeling framework for HILP events:
simulate extreme event spatio-temporal trajectories and quantify their time-varying risks

Power grid

Power grid Power grid

Operational planning:
* Multi-stage operational decision-making to minimize the time-varying risks of an upcoming event

* “Curse of dimensionality” — function approximation techniques using simulation-based
framework
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