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Motivation

Dramatic increase of  extreme events 
related outages

• In the United States, extreme 

weather caused nearly 70 percent 

more power outages from 2010-2019 

than the previous decade.

• Weather-related power outages cost 

Americans $20-55 billion annually 1. 

• Utility customers experienced 1.33 

billion outage hours in 2020, up 73% 

from roughly 770 million in 2019, 

according to PowerOutage.US, an 

aggregator of  utility blackout data.Billion-Dollar Disasters by Decade | Climate Matters 
(climatecentral.org)
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Executive Office of the President, Economic Benefits of Increasing Electric Grid Resilience  to Weather Outages, (August 2013)

https://medialibrary.climatecentral.org/resources/billion-dollar-disasters-by-decade-2020


Severe power outages caused by extreme 

weather events:  (Most Recent)

• 2019 California power shutoffs: 3 

million customers 

• Texas Power Crisis (2021): 5 million 

customers (at its peak)

• Hurricane Ida (2021): 1.2 million 

customers

Increasing frequency of  Extreme Weather 

Events: 

• 1980 to 2020 - average 7.1 events/year,

• 2016 to 2020 - average 16.2 events/year

Increasing average annual cost of  

disasters. 

Number of outages affecting more than 50k customers

Motivation

Billion-Dollar Disasters by Decade | Climate Matters (climatecentral.org)

https://medialibrary.climatecentral.org/resources/power-outages

https://www.ncdc.noaa.gov/billions/summary-stats
https://medialibrary.climatecentral.org/resources/billion-dollar-disasters-by-decade-2020


Resilience: Power Distribution Systems

Outages due to damage:  Transformers, utility poles, overhead distribution lines are all 

vulnerable to severe weather, particularly high winds, heavy rain, ice, snow.

Outages due to public safety power shutoffs: Extreme weather events (wildfire risk, increased 

demand due to heatwave or cold front) stressing the supply system, PSPS disrupting the 

power supply to millions of  customers. 

June 25, 2021

Need an expedited incorporation of  resilience in 

the aging and stressed power distribution systems



Resilient Distribution Systems
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How to keep the lights on?

• Grid hardening: vegetation 

management, undergrounding lines 

• Smart grid investments – added 

sensors, communication, decision-

support systems

• Non-traditional ways of  operating 

grid:

• Networked microgrids

• Demand-side flexibility to better 

manage rare contingencies

• Planned rolling/rotating 

blackouts Intentional Islanding using Local Generation Resources to 

support intentional islands.

An Example of  Improving Resilience to Extreme Event

Energized island



What is needed? – Plan and Operate for Resilience 
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Long-term planning: 

• Where and what lines/poles to harden? 

• Where to place new devices for added flexibility: tie switches, DGs, storage?

• How prioritize different long-term planning activities?

Substation 

DER Assets
               Distributed Controllers
               Other controllable DGs
               Uncontrollable DGs

Customers
                Critical loads
                Loads with BTM PVs

Network
               Microgrid boundary
               Open switch
               Closed switch
               Conductor

Repair crew

Repair crew
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Operational planning (preparation for upcoming event): 

• Planned rolling/rotating blackouts, proactive islanding, plan mobile energy resources

• Plan disaster recovery – dispatch crew, line and poles

• Need to capture time-varying impacts of  an upcoming event. 

What is needed? – Plan and Operate for Resilience 

Substation 

DER Assets
               Distributed Controllers
               Other controllable DGs
               Uncontrollable DGs

Customers
                Critical loads
                Loads with BTM PVs

Network
               Microgrid boundary
               Open switch
               Closed switch
               Conductor

Repair crew

Repair crew



9

• These solutions cost a lot and planning for rare events need to justify the cost

• These solutions need to reflect the value they provide in mitigating the risks imposed by the 

High Impact Low Probability (HILP) events 

What is needed? – Plan and Operate for Resilience 

Substation 

DER Assets
               Distributed Controllers
               Other controllable DGs
               Uncontrollable DGs

Customers
                Critical loads
                Loads with BTM PVs

Network
               Microgrid boundary
               Open switch
               Closed switch
               Conductor

Repair crew

Repair crew
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A framework for planning distribution 

systems for resilience 

Attention to 

HILP events

Modeling and Computational 

Challenges

Non-traditional ways of  

operating grid

Distribution grid planning in response to HILP Events:

• Infrastructural Risk modeling: Characterize the impacts of  HILP events on the power grid 

infrastructure

• Risk-averse optimization models for Long-term and Operational planning: Add 

operational flexibility to the grid to improve their response during HILP events 

Distribution System Resilience Modeling and Optimization 



Overall Approach - HILP Events and Resilience 
(Power Distribution Systems) 

CVaR: Optimize 

for this areas



Substation

S

D

D

D

D

Substation

S

Substation

S

D

D

D

D

Substation

S

D

D

D

D

Substation

S

Substation

S

D

D

D

D

12

Resilience Planning: Two-stage Stochastic Program 
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A two-stage stochastic optimization formulation

• Stage 1 (pre-event) planning decisions - line hardening, DG placement, etc. (Sampling and 

impact assessment via simulation framework)

• Stage 2 (post-event) operational decisions - DG-assisted restoration, intentional islanding 

(solve optimal coordination problem)

Optimize CVaR metric - Resilience planning of  power distribution system

Stage 1 : pre-event planning Original distribution system Stage 2: post-event operations 



Model and Quantify 

How to characterize High-impact and Low-probability (HILP) 
events for their impacts on the power grid infrastructure?



Risk-based Resilience Quantification 

How to characterize High-impact and Low-

probability (HILP) events for their impacts on 

physical infrastructure?

Modeling the spatio-temporal risks of  an extreme 

event on the resilience of  the critical 

infrastructure systems; 

• Risk-based metric for quantifying the impacts of  

HILP events.

• Relating the impacts with the planning measures 

to reduce the risks of  HILP events

• Mechanism to identify trade-offs among 

planning measures by evaluating their impacts on 

risks posed by HILP events.
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Event 
Probability 

Event 
Impacts

• Shiva Poudel, Anamika Dubey, and Anjan Bose, “Risk-based Probabilistic Quantification of Power Distribution System Operational Resilience,” IEEE Systems Journal on Aug 2019.
• Shuva Paul, Shiva Poudel, A. Dubey, “Planning for Resilient Power Distribution Systems using Risk-Based Quantification and Q-Learning,” accepted, IEEE PES GM 2021.



Risk-based Resilience Quantification
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Performance Loss Function 

R. T. Rockafellar and S. Uryasev,"Optimization of conditional value-at-risk" Journal of Risk 2 (2000), 493-517

N. Noyan, Risk-averse two-stage stochastic programming with an application to disaster management, Computers & Operations Research, vol. 39, no. 3, pg. 541-559, Mar. 2012



Quantifying Resilience: Risk Modeling
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A simulation-based 

approach 

Data generation

• Opensource data for 

event modeling

• Hypothetical fragility 

curves 

• Monte-Carlo 

simulations

Probabilistic quantification 

of  the impacts (risks)

• Shiva Poudel, Anamika Dubey, and Anjan Bose, “Risk-based Probabilistic Quantification of Power Distribution System Operational Resilience,” IEEE Systems Journal on Aug 2019.
• Shuva Paul, Shiva Poudel, A. Dubey, “Planning for Resilient Power Distribution Systems using Risk-Based Quantification and Q-Learning,” accepted, IEEE PES GM 2021.



Probabilistic Event and System Performance loss
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M. Panteli and P. Mancarella, “The grid: Stronger, bigger, smarter?: Presenting a conceptual framework of power system resilience,” IEEE Power Energy Mag., vol. 13, no. 3, pp. 58–
66, May/Jun. 2015



Component Level Impact Model
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System-level Impact Model
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Simulated Results

20
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Results

• The approach can incorporate planning measures in place to reduce the risks of  HILP events

• Used for Resilience oriented design of  power distribution system: example case of  optimal 

line hardening Q-learning framework based on risk metrics

Shiva Poudel, Anamika Dubey, and Anjan Bose, “Risk-based Probabilistic Quantification of Power Distribution System Operational Resilience,” IEEE Systems Journal, Aug 2019.   



Resilience Metric at the Bulk Grid Level

Large geographic area, need to capture time-varying effects of  the extreme event, use the time-

varying impact model for operational planning over multiple time-period 

Hurricane 
Model

P. Javanbakht, S. Mohagheghi, “A risk-averse security-constrained optimal power flow for a power grid subject to hurricanes”, Electric Power Systems Research, Nov. 2014



Resilience Metric at the Bulk Grid Level: Simulation 

• Hurricane  Model - Hurricane parameters from real data: National Oceanic and Atmospheric 

Administration1, parameters are randomly sampled to generate a single scenario of  Hurricane2

• Power System Model - Texas 2000 bus synthetic model is used as a test case3 to evaluate system-level 

impacts

• Time-varying probabilistic systems loss is calculated as hurricane eye moves in consecutive time steps

1. http://www.aoml.noaa.gov/hrd/data sub/us history.html
2. P. Javanbakht, S. Mohagheghi, “A risk-averse security-constrained optimal power flow for a power grid subject to hurricanes”, Electric Power Systems Research, Nov. 2014
3. A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye and T. J. Overbye, "Grid Structural Characteristics as Validation Criteria for Synthetic Networks," in IEEE Transactions on Power 

Systems, vol. 32, no. 4, pp. 3258-3265, July 2017



Impact Modeling and Resilience Metric for T&D System 

• Co-simulation methods to evaluate the impacts of  extreme events on T&D systems

• Minimum exchange of  data between bulk grid and distribution system operators, only 
need to know what lines/buses may be impacted and with what probability

• Currently, working on integrating synthetic Tx2000 bus and synthetic Austin 
distribution feeder available at Electric Grid Test Case Repository (tamu.edu)

307,236 end-use customers with 160 
high-voltage buses, 448 feeders

Synthetic 2000-bus 
power system test case

A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye and T. J. Overbye, "Grid Structural Characteristics as Validation Criteria for Synthetic Networks," in IEEE Transactions on Power Systems, vol. 
32, no. 4, pp. 3258-3265, July 2017

https://electricgrids.engr.tamu.edu/


Risk-averse Optimization

How to economically add operational flexibility to the grid to improve their 
response during extreme weather events? 



Resilience Planning 

How to economically add operational flexibility to the grid to improve their 
response during extreme weather events?
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Our contributions: 

• Risk-averse framework for resource 

planning to manage disruptions in critical 

infrastructure system

• Long-term planning solutions to identify 

the locations for system upgrades for 

improved resilience

• A CVaR-based formulation to minimize the 

highest impacts of  low-probability events

• Tradeoff  among planning measures -

backup resources vs. Line hardening

Example: Where to place DGs, which lines to 

harden? 

Substation

S

D

D

D
Distributed Energy 

Resource

D

Sectionalizing switch

Tie switch

D

Planning Decisions 

(location and size/capacity)

Hardened lines



• A framework for modeling any optimization problem that involves uncertainty 

• Two-stage Stochastic Program: A large number of  potential scenarios, 

• Stage I: Make some advance decisions (plan ahead), 

• Stage II: Observe the actual input scenario, Take recourse actions in response to the 
realization of  the random variables and the first stage decisions

Stochastic Optimization

Stage 1 (pre-event)(x: first-stage decision 

variables) - should not depend on future 

observation

min 𝑐𝑇𝑥 + 𝔼[𝑄(𝑥, 𝜉)]
subject to,

𝐴𝑥 ≥ 𝑏

𝔼 𝑄 𝑥, 𝜉 =෍

𝑠=1

𝑆

𝑝𝑠𝑄(𝑥, 𝜉𝑠)

Stage 2 (post-event) after realizing 

scenario, we take recourse decisions, 

𝑦 second stage decision variables

𝑄 𝑥, 𝜉 = min𝑞𝑇𝑦
subject to,

𝑇𝑥 + 𝑊𝑦 ≤ ℎ

𝑥(𝑓𝑖𝑥𝑒𝑑)

Schultz, R., Tiedemann, S. Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse. Math. Program. 105, 365–386 (2006).
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Risk-averse Optimization 

Conditional value at risk in the objective : 

• a tradeoff  parameter 𝜆 can differentiate the risk-neutral vs risk-averse objective

𝒎𝒊𝒏
𝒙

𝒄𝑻𝐱 + (𝟏 − 𝝀)𝔼𝝆𝐐 𝛏, 𝒙 + 𝝀𝐂𝐕𝐚𝐑𝜶(𝐐 𝝃,𝒙 )
tradeoff  for 

risk-neutral vs 

risk-averse

𝐶𝑉𝑎𝑅𝛼 Z = inf
𝜂∈ℝ

𝜂 +
1

1 − 𝛼
𝔼(max( 𝑍 − 𝜂 , 0)

where,

Mean-risk function with 𝐶𝑉𝑎𝑅𝛼 as risk measure:

where, 𝜆 is the non-negative trade-off coefficient known as the risk coefficient

min
𝑥∈𝕏

{𝔼 𝑓 𝑥, 𝜔 + 𝜆𝐶𝑉𝑎𝑅𝛼[𝑓(𝑥,𝜔)]}

where, 𝜂 = value-at-risk



Risk-averse vs Risk-neutral 

• Higher the value of  𝝀, higher is the inclination towards risk aversion

• due to changing trade-off  between expectation and 𝑪𝑽𝒂𝑹𝜶, higher 𝝀 gives higher expected total cost 

and hence lower 𝑪𝑽𝒂𝑹𝜶

min
𝑥∈𝕏

{𝔼 𝑓 𝑥, 𝜔 + 𝜆𝐶𝑉𝑎𝑅𝛼[𝑓(𝑥,𝜔)]}

𝐶𝑉𝑎𝑅𝛼[𝑓(𝑥, 𝜔)]

𝑓 𝑥, 𝜔 ≔ 𝑐𝑇𝑥 + 𝔼(𝑄 𝑥,𝜔 )

𝑓 𝑥, 𝜔 ≔ 𝑐𝑇𝑥 + 𝔼(𝑄 𝑥,𝜔 )



Two-Stage Risk-averse Stochastic Program - Distribution 
System Planning

Overall problem: Identify optimal locations for feeder upgrades given the PDF of  weather event, 

component fragility curves and load criticality to minimize CVaR. 
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Stage 1 (Decision Variables) – location 

and sizes of  planning decisions (DGs, 

switches, line hardening)
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Stage 2 (Decision Variables) – How to restore the 

network for a give realization of  outages/fault?

Fault scenario 1 Fault scenario 2
Need to be optimal for possible realization of 

fault scenarios



Stage 2 Problem (Inner loop Optimization Problems)

• Inner loop optimization problems 

• Optimal power flow problems 

• Require optimal coordination of  all assets for a given realization of  extreme weather 

event. 

• Require solving difficult nonlinear optimization problem at the distribution level for 

feeder restoration 

Substation

S

D

D

D

D

Substation

S

D

D

D

D

Optimal distribution 
system restoration 

Fault scenario



Optimal Coordination (of  controllable assets) for a given 
Realization of  Extreme Event

Inner loop Optimization Problem (solved for 
each scenario)

• DG-assisted resilient restoration grid-
forming and grid-following technologies to 
support critical load via intentional 
islanding

• Mixed-integer linear programming 
formulations

• Use of  mobile energy resources along 
with other DGs
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1. S Poudel and A Dubey, “Critical Load Restoration using Distributed Energy Resources for Resilient Power Distribution System,” IEEE Transactions on Power Systems, Aug 2018
2. S. Poudel, A. Dubey, P. Sharma, and K. P. Schneider, “Advanced FLISR with Intentional Islanding Operations in an ADMS Environment Using GridAPPS-D,” IEEE Access, May 2020.
3. S Poudel, A Dubey, and K P. Schneider, “A Generalized Framework for Service Restoration in a Resilient Power Distribution System,” IEEE Systems Journal, Aug 2020.
4. S Poudel and A Dubey, “A Two-Stage Framework for Service Restoration of Power Distribution Systems,” IET Smart Grid, Jan 2021.

Inner loop optimization problems 
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Optimal Coordination (of  controllable assets) for a given 
Realization of  Extreme Event

Inner loop Optimization Problem (solved 
for each scenario)

• Self-organizing Islands - Distributed 
solutions to restoration via use of  
microgrids and networked microgrids

• Laminar architecture for distributed 
applications 

• Distributed computing algorithms for 
fast consensus

• Stability of  islanded systems
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1. R. Sadnan and A. Dubey, “Distributed Optimization using Reduced Network Equivalents for Radial Power Distribution Systems,” IEEE Transactions on Power Systems, Jan 2021
2. R. Sadnan, N. Gray, A. Dubey, and A. Bose, “Distributed Optimization for Power Distribution Systems with Cyber-Physical Co-simulation,” IEEE PES GM 2021.
3. R. Sadnan, A. Dubey, “Real-Time Distributed Control of Smart Inverters for Network-level Optimization,” IEEE SmartGridComm 2020, Nov. 11-12, 2020, virtual format.
4. R Sadnan, T Asaki, and A Dubey, “Online Distributed Optimization in Radial Power Distribution Systems: Closed-Form Expressions,” IEEE SmartGridComm 2021.

Inner loop optimization problems 



Resilient Restoration: GridAPPS-D Platform
*GridAPPS-D – open-source advanced distribution management platform (real-time operational environment  )

Application to restore power system using distributed generators (deployed: https://gridappsd-
restoration.readthedocs.io/en/latest/)

S. Poudel, A. Dubey, P. Sharma, and Kevin P. Schneider, “Advanced FLISR with Intentional Islanding Operations in an ADMS Environment Using GridAPPS-D,” IEEE Access, May 2020 

https://gridappsd-restoration.readthedocs.io/en/latest/


Two-Stage Risk-averse Stochastic Program - Distribution 
System Planning

Overall problem: Identify optimal locations for feeder upgrades given the PDF of  weather event, 

component fragility curves and load criticality to minimize CVaR. 
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Two-Stage Risk-averse Stochastic Program for Distribution 
System Planning (First Stage) 

Substation

S

D

D

D

D

Stage 1 (Decision Variables) – location 

and sizes of  planning decisions (DGs, 

switches, line hardening)

Need to be optimal for possible realization of 
fault scenarios

Stochastic optimization 

with mixed-integer 

recourse



Stage 2 (Decision Variables) – How to optimally restore the 

network for a give realization of  outages/fault

Two-Stage Risk-averse Stochastic Program for Distribution 
System Planning (Second Stage) 

Objective function: 

• Maximize the amount of  load restored

• Minimize the cost of  switching

Constraints

• Connectivity constraints
• Switch and load decision
• Radial operation

• Operational constraints
• Power flow and voltage constraints
• Network operating constraints
• DG limit constraints

For each scenario 

Mixed-integer linear 

program 



Two-stage Problem Formulation in Extensive form 

𝑔 𝑥, 𝑦, 𝜂, 𝜈 ≔ min
𝑥∈𝕏

1 + 𝜆 ෍

𝑖=1

𝑛

𝑐𝑇𝛿𝑖 +෍

𝑠=1

𝑁

𝑝𝑠෍

𝑖∈𝑉

෍

𝜙∈{𝑎,𝑏,𝑐}

𝑤𝑖,𝑠𝑠𝑖,𝑠𝑃𝐿𝑖,𝑠
𝜙

+ 𝜆 𝜂 +
1

1 − 𝛼
෍

𝑖=1

𝑁

𝑝𝑖𝜈𝑖

Subject to, 

𝜈𝑖 ≥ 𝑑𝑒𝑚𝑎𝑛𝑑 − ෍

𝑖∈𝑉

෍

𝜙∈ 𝑎,𝑏,𝑐

𝑤𝑖,𝑠𝑠𝑖,𝑠𝑃𝐿𝑖,𝑠
𝜙

− 𝜂, ∀𝑖 = 1,2, … ,𝑁

𝜂 ∈ ℝ, 𝜈𝑖 ≥ 0, ∀𝑖 = 1,2, … , 𝑁

𝑥, 𝑦 ∈ ℤ+ × ℝ+

𝑔 𝑥, 𝑦, 𝜂, 𝜈 ≔ min
𝑥∈𝕏

𝟏 + 𝝀 ෍

𝒊=𝟏

𝒏

𝒄𝑻𝜹𝒊 + 𝝀𝜼 +෍

𝒔=𝟏

𝑵

𝒑𝒔෍

𝒊∈𝑽

෍

𝝓∈{𝒂,𝒃,𝒄}

𝒘𝒊,𝒔𝒔𝒊,𝒔𝑷𝑳𝒊,𝒔
𝝓

+ 𝝀
𝟏

𝟏 − 𝜶
෍

𝒔=𝟏

𝑵

𝒑𝒔𝝂𝒔

𝑑𝑒𝑚𝑎𝑛𝑑 − ෍

𝑖∈𝑉

෍

𝜙∈ 𝑎,𝑏,𝑐

𝑤𝑖,𝑠𝑠𝑖,𝑠𝑃𝐿𝑖,𝑠
𝜙

Restored Load

Overall Loss

total prioritized load restored in scenario s  
after solving the optimal restoration problem 
for the scenario s (inner loop optimization)



Solving the two-stage problem: Methods and tools

All methods convert stochastic problem to a deterministic problem

• Sampling-based approaches: Extensive form, create multiple copies of  second 
stage problem, solve a large single-stage deterministic optimization problem, 
most accurate, scenario selection is crucial

• Progressive hedging: relax non anticipativity constraint, primal and dual of  
convex stochastic problems, equivalent to alternating direction method of  
multipliers (ADMM), fast algorithm → parallelizable

• Stochastic Dual Dynamic Programming: Great in a multi-stage setting, stage-
wise decomposition of  the problem



Solution Approach  

1Sampling and system-level impacts  2Scenario selection 3Two-stage stochastic optimization

+

Monte-Carlo 
Simulation

𝑁 scenarios

• Choose representative 
scenarios based on 
probabilistic loss function

• Appropriately represents low 
probability events compared to 
uniform sampling

Event

DG

DG

𝑛 ⊂ 𝑁 scenarios
2nd stage solution
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Possible DG location Tie switches Sectionalizing switches

Substation

DG

DG

DG

DG

Expected loss = 1027.359 kW
Value-at-risk = 3414.6 kW

Conditional value-at-risk = 3466.13 kW

Test cases (Planning tradeoffs for risk-averse vs  risk-neutral cases):
1. Increase in number of DGs for different risk factor, 𝜆
2. Increase in total size of DGs for different risk factor, 𝜆

Preliminary Results: Planning Decision Tradeoffs

Base case, 

No DGs



λ = 0 (risk-neutral) λ = 0.5 (mean-risk) λ = 1 (risk-averse)

VAR 3210 3210 3210

CVaR 3356.455 3352.535 3352.5352

Expected value 720.2485 719.27913 731.7657

DG output 
Z[39] Z[95] Z[122] Z[39] Z[95] Z[122] Z[39] Z[95] Z[122]

40 740 120 40 720 140 60 405 435

• total possible loss = 3490 kW

• the number of scenarios that have loss above 
3000 kW were recorded 

• no restoration = 27027

• risk neutral (𝜆 = 0) = 23570

• mean-risk (𝜆 = 0.5) = 23494

• risk-averse (𝜆 = 1) = 23270

Preliminary Results: Planning Decision Tradeoffs

After placing DGs: Sum of DG size = 900 kWBase case: 
Expected loss = 1027.359 kW

Value-at-risk = 3414.6 kW
Conditional value-at-risk = 3466.13 kW



λ = 0 (risk-neutral) λ = 0.5 (mean-risk) λ = 1 (risk-averse)

#𝐃𝐆𝐬
Expected 

Loss
𝑉𝐴𝑅𝜶 𝐶𝑉𝐴𝑅𝜶

Expected 
Loss

𝑉𝐴𝑅𝜶 𝐶𝑉𝐴𝑅𝜶
Expected 

Loss
𝑉𝐴𝑅𝜶 𝐶𝑉𝐴𝑅𝜶

3 719.89 3210 3356.45 717.13 3210 3352.51 726.916 3210 3352.51

6 654.82 3055 3192.04 653.88 3055 3180.21 659.277 3055 3180.21

𝜆 =0 𝜆 =0.5 𝜆 =1

Sum of DG size = 900 kW

Preliminary Results: Planning Decision Tradeoffs



𝜆 = 0 𝜆 = 0.5 𝜆 = 1

s λ = 0 (risk-neutral) λ = 0.5 (mean-risk) λ = 1 (risk-averse)

∑𝑫𝑮
Expected 

Loss
𝑉𝐴𝑅𝜶 𝐶𝑉𝐴𝑅𝜶

Expected 
Loss

𝑉𝐴𝑅𝜶 𝐶𝑉𝐴𝑅𝜶
Expected 

Loss
𝑉𝐴𝑅𝜶 𝐶𝑉𝐴𝑅𝜶

900 719.88 3210 3356.45 717.12 3210 3352.51 726.91 3210 3352.51

1800 657.23 3210 3352.51 647 3210 3352.51 684.83 3210 3352.51

2700 617.56 3210 3352.51 617.19 3210 3352.51 662.22 3210 3352.51

Preliminary Results: Planning Decision Tradeoffs



Ongoing and Future Work



Ongoing and Future Work

• Risk-neutral vs. Risk-averse Planning Tradeoffs:

• Evaluation of  tradeoffs for several combination of  planning activities include line hardening, 
switch placement and DG sizing and placement. 

• The presented formulation is generic and problem complexity does not significantly increase 
with the increase in the number of  planning decisions for a given distribution feeder. 

• Scaling for lager feeders: 

• Extensive form leads to a very large-scale mixed-integer linear program, Progressive hedging 
results in large optimality gap as the problem is non-convex 

• We investigated the application of  solving the extensive form and use of   progressive hedging 
techniques for a small 123-bus distribution system 

• Currently working on value-function approximation with simulation-based framework to 
scale the problem for large networks

• Collaboration with local utility Avista on data-driven analysis



Risk-modeling framework for HILP events: 

simulate extreme event spatio-temporal trajectories and quantify their time-varying risks

Ongoing and Future Work

Operational planning:

• Multi-stage operational decision-making to minimize the time-varying risks of  an upcoming event

• “Curse of  dimensionality” – function approximation techniques using simulation-based 

framework
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