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Challenges & Opportunities
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Batteries

• Source: Greentech Media

DER Aggregators

• Source: AutoGrid
• Source: PJM

Wholesale Market

Market Operation Market Participation

• Energy arbitrage behavior of batteries?

• Batteries’ impact on market operation?

• Coordinate T&D, DER aggregators, and DERs?

• Market bidding/offering strategies?

• Forecast Electricity price?

• Offer multiple services?



Proposed Solutions
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Market + Batteries:                                                                        

Optimal Battery Participation in Energy & Ancillary Services Markets

Market + DER Aggregators:                                                         

A DSO Design for Wholesale & Retail Markets with DER Aggregators

Market Participation:                                                                    

Machine Learning for System-Wide Electricity Price Forecasting
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Background & Motivation
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❖ Understand the role of utility-scale batteries in daily

system operations and economics

Sustainability

• CO2 Reduction

• Renewables

Technology

• BESS: fast ramping, 

multiple services

Policy

• FERC Order 841

• BESS → Markets



Background & Motivation
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The Role of Utility-Scale Batteries in System Operations & Economics

• The impact of utility-scale batteries on daily market operations

• Utility-scale batteries’ capability of multiple services provision (energy arbitrage, spinning reserve, 

frequency regulation services, etc.)

• Operating patterns of merchant batteries in energy, reserve, and pay-as-performance regulation markets

• Interaction between battery owner’s profit maximization strategies and system operator’s joint operating 

cost minimization activities (via the market clearing process)

Bi-Level Optimization: Battery Owner & System Operator



Problem Formulation: Bi-Level Optimization Framework
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• Upper-level Problem: Battery owner’s 

profit maximization from real-time energy, 

reserve, and pay-as-performance 

regulation markets

• Lower-level Problem: System operator’s 

joint market clearing process for real-time 

energy, reserve, and pay-as-performance 

regulation markets



The Upper-Level Problem
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𝑚𝑎𝑥෍

𝑡∈𝑇

෍

𝑖∈𝐵

𝜋𝑖,𝑡
𝐸 𝑃𝑖,𝑡

𝐵,𝑆 − 𝑃𝑖,𝑡
𝐵,𝐷 + 𝜋𝑡

𝑅𝑠𝑃𝑖,𝑡
𝐵,𝑅𝑠

+𝜋𝑡
𝑅𝑔𝐶

𝑃𝑖,𝑡
𝐵,𝑅𝑔𝐶

+𝜋𝑡
𝑅𝑔𝑀

𝑃𝑖,𝑡
𝐵,𝑅𝑔𝑀 ∆𝑡

Subject to:

0 ≤ 𝑄𝑖,𝑡
𝐸,𝑆≤ 𝑢𝑖𝑃𝑖

𝑅𝑎𝑡𝑒

0 ≤ 𝑄𝑖,𝑡
𝐸,𝐷≤ 1 − 𝑢𝑖 𝑃𝑖

𝑅𝑎𝑡𝑒

0 ≤ 𝑄𝑖,𝑡
𝑅𝑠≤ 𝑃𝑖

𝑅𝑎𝑡𝑒

0 ≤ 𝑄𝑖,𝑡
𝑅𝑔𝐶

≤ 𝑃𝑖
𝑅𝑎𝑡𝑒

−𝑃𝑖
𝑅𝑎𝑡𝑒 + 𝑃𝑖,𝑡

𝐵,𝑅𝑔𝐶
≤ 𝑃𝑖,𝑡

𝐵,𝐷 − 𝑃𝑖,𝑡
𝐵,𝑆 − 𝑃𝑖,𝑡

𝐵,𝑅𝑠 ≤ 𝑃𝑖
𝑅𝑎𝑡𝑒 − 𝑃𝑖,𝑡

𝐵,𝑅𝑔𝐶

𝑆𝑂𝐶𝑖,𝑡 = 𝑆𝑂𝐶𝑖
𝐼𝑛𝑖𝑡 + σ𝑘=1

𝑡 𝑃𝑖,𝑘
𝐵,𝑆 − 𝑃𝑖,𝑘

𝐵,𝐷 ∆𝑡

𝑆𝑂𝐶𝑖
𝑀𝑖𝑛 + 𝑃𝑖,𝑡

𝐵,𝑅𝑠 + 𝑃𝑖,𝑡
𝐵,𝑅𝑔𝐶

∆𝑡 ≤ 𝑆𝑂𝐶𝑖,𝑡 ≤ 𝑆𝑂𝐶𝑖
𝑀𝑎𝑥 − 𝑃𝑖,𝑡

𝐵,𝑅𝑔𝐶
∆𝑡

• Upper-Level Objective: Battery owner’s profit 

maximization from real-time energy, reserve, 

and pay-as-performance regulation markets

• Constraints-1: Battery output power limits

• Constraints-2: Battery state of charge (SOC) 

limits



The Lower-Level Problem
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Subject to:

• Lower-Level Objective: System operator’s joint 

market clearing process for real-time energy, reserve, 

and pay-as-performance regulation markets

• Constraints-1: Operating limits of batteries

𝑚𝑎𝑥෍

𝑡∈𝑇

෍

𝑗∈𝐺

𝛼𝑗,𝑡
𝐸,𝑆𝑃𝑗,𝑡

𝐺,𝑆 + 𝛼𝑗,𝑡
𝑅𝑠𝑃𝑗,𝑡

𝐺,𝑅𝑠 +

𝛼𝑗,𝑡
𝑅𝑔𝐶

𝑃𝑗,𝑡
𝐺,𝑅𝑔𝐶

+ 𝛼𝑗,𝑡
𝑅𝑔𝑀

𝑃𝑗,𝑡
𝐺,𝑅𝑔𝑀

෍

𝑖∈𝐵

𝛽𝑖,𝑡
𝐸,𝑆𝑃𝑖,𝑡

𝐵,𝑆 − 𝛽𝑖,𝑡
𝐸,𝐷𝑃𝑖,𝑡

𝐵,𝐷 + 𝛽𝑖,𝑡
𝑅𝑠𝑃𝑖,𝑡

𝐵,𝑅𝑠

+𝛽𝑖,𝑡
𝑅𝑔𝐶

𝑃𝑖,𝑡
𝐵,𝑅𝑔𝐶

+𝛽𝑖,𝑡
𝑅𝑔𝑀

𝑃𝑖,𝑡
𝐵,𝑅𝑔𝑀

∆𝑡

• Constraints-2: Operating limits of generators

0 ≤ 𝑃𝑖,𝑡
𝐵,𝑆 ≤ 𝑄𝑖,𝑡

𝐸,𝑆

0 ≤ 𝑃𝑖,𝑡
𝐵,𝐷 ≤ 𝑄𝑖,𝑡

𝐸,𝐷

0 ≤ 𝑃𝑖,𝑡
𝐵,𝑅𝑠 ≤ 𝑄𝑖,𝑡

𝑅𝑠

0 ≤ 𝑃𝑖,𝑡
𝐵,𝑅𝑔𝐶

≤ 𝑄𝑖,𝑡
𝑅𝑔𝐶

𝑃𝑗
𝑀𝑖𝑛 + 𝑃𝑗,𝑡

𝐺,𝑅𝑔𝐶
≤ 𝑃𝑗,𝑡

𝐺,𝑆 ≤ 𝑃𝑗
𝑀𝑎𝑥 − 𝑃𝑗,𝑡

𝐺,𝑅𝑠 − 𝑃𝑗,𝑡
𝐺,𝑅𝑔𝐶

0 ≤ 𝑃𝑗,𝑡
𝐺,𝑅𝑠 ≤ 𝑃𝑗

𝑅𝑠,𝑟𝑎𝑚𝑝

0 ≤ 𝑃𝑗,𝑡
𝐺,𝑅𝑔𝐶

≤ 𝑃𝑗
𝑅𝑔,𝑟𝑎𝑚𝑝



The Lower-Level Problem
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Subject to:

• Constraints-3: Operating constraints of 

pay-as-performance regulation markets

• Constraints-4: System-wide reserve and 

regulation requirements

𝑚𝑎𝑥෍

𝑡∈𝑇

෍

𝑗∈𝐺

𝛼𝑗,𝑡
𝐸,𝑆𝑃𝑗,𝑡

𝐺,𝑆 + 𝛼𝑗,𝑡
𝑅𝑠𝑃𝑗,𝑡

𝐺,𝑅𝑠 +

𝛼𝑗,𝑡
𝑅𝑔𝐶

𝑃𝑗,𝑡
𝐺,𝑅𝑔𝐶

+ 𝛼𝑗,𝑡
𝑅𝑔𝑀

𝑃𝑗,𝑡
𝐺,𝑅𝑔𝑀

෍

𝑖∈𝐵

𝛽𝑖,𝑡
𝐸,𝑆𝑃𝑖,𝑡

𝐵,𝑆 − 𝛽𝑖,𝑡
𝐸,𝐷𝑃𝑖,𝑡

𝐵,𝐷 + 𝛽𝑖,𝑡
𝑅𝑠𝑃𝑖,𝑡

𝐵,𝑅𝑠

+𝛽𝑖,𝑡
𝑅𝑔𝐶

𝑃𝑖,𝑡
𝐵,𝑅𝑔𝐶

+𝛽𝑖,𝑡
𝑅𝑔𝑀

𝑃𝑖,𝑡
𝐵,𝑅𝑔𝑀

∆𝑡

𝑃𝑗,𝑡
𝐺,𝑅𝑔𝐶

≤ 𝑃𝑗,𝑡
𝐺,𝑅𝑔𝑀

≤ 𝑚𝑗𝑃𝑗,𝑡
𝐺,𝑅𝑔𝐶

𝑃𝑖,𝑡
𝐵,𝑅𝑔𝐶

≤ 𝑃𝑖,𝑡
𝐵,𝑅𝑔𝑀

≤ 𝑚𝑖𝑃𝑖,𝑡
𝐵,𝑅𝑔𝐶

σ𝑖∈𝐵𝑃𝑖,𝑡
𝐵,𝑅𝑠 + σ𝑗∈𝐺 𝑃𝑗,𝑡

𝐺,𝑅𝑠 ≥ 𝑅𝑡
𝑅𝑠

σ𝑖∈𝐵𝑃𝑖,𝑡
𝐵,𝑅𝑔𝐶

+ σ𝑗∈𝐺 𝑃𝑗,𝑡
𝐺,𝑅𝑔𝐶

≥ 𝑅𝑡
𝑅𝑔𝐶

σ𝑖∈𝐵𝑃𝑖,𝑡
𝐵,𝑅𝑔𝑀

+ σ𝑗∈𝐺 𝑃𝑗,𝑡
𝐺,𝑅𝑔𝑀

≥ 𝑅𝑡
𝑅𝑔𝑀

σ𝑖∈𝐵 𝑃𝑖,𝑡
𝐵,𝑆 − 𝑃𝑖,𝑡

𝐵,𝐷 + σ𝑗∈𝐺 𝑃𝑗,𝑡
𝐺,𝑆 = 𝑃𝑡

𝐿𝑜𝑎𝑑 • Constraints-5: System power balance

• Lower-Level Objective: System operator’s joint 

market clearing process for real-time energy, reserve, 

and pay-as-performance regulation markets



Solution Procedure
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Convert Bi-Level Problem to Single-Level Problem

• Lower-level problem: linear and convex

• Solve lower-level problem via solving the KKT equations of the lower-level problem

• Write KKT conditions of the Lower-level problem as constraints for the upper-level problem

Single-Level Problem after Conversion

𝒎𝒂𝒙෍

𝒕∈𝑻

෍

𝒊∈𝑩

𝝅𝒊,𝒕
𝑬 𝑷𝒊,𝒕

𝑩,𝑺 − 𝑷𝒊,𝒕
𝑩,𝑫 + 𝝅𝒕

𝑹𝒔𝑷𝒊,𝒕
𝑩,𝑹𝒔 + 𝝅𝒕

𝑹𝒈𝑪
𝑷𝒊,𝒕
𝑩,𝑹𝒈𝑪

+𝝅𝒕
𝑹𝒈𝑴

𝑷𝒊,𝒕
𝑩,𝑹𝒈𝑴

∆𝒕

𝒔. 𝒕. Battery power output limits

Battery state of charge (SOC) limits

KKT conditions of the lower-level problem

Original Constraints of

Upper-Level Problem



Case Study: Test System
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• Modified PJM 5-bus test system (Market clearing interval  = 15 min; Simulation time = 24 hours)

• BESS Capacity: 400MWh ;   BESS Output Power limit: 40MW

• System’s Load: 1000MW mapped on 2018 PJM load pattern

• System’s Spinning Reserve Requirements: 10% of load in each interval

• System’s Regulation Capacity Requirements: 4% of load in each interval

• System’s Regulation Mileage Requirements: 1.75 times regulation capacity requirements

Peak Hours



Case Study Results
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[Case 1] Modeling Energy Market Only

Charge Discharge

SOCmax: 380MWh

Battery State of 

Charge (SOC)

Energy Market 

Revenue

• Energy arbitrage between different market clearing intervals



Case Study Results
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[Case 2] Modeling Energy & Reserve Markets

• Energy arbitrage between different market clearing intervals & between different markets

• Energy arbitrage between different markets at the same market clearing interval (during charging period)

• Lower state of charge (SOC) compared to Case 1 (with energy market only)

Charge Discharge

SOCmax: 265MWh

Reserve Revenue

In Charging Period

Battery SOC

Energy Market 

Revenue

Reserve Market 

Revenue

Peak Hours



Case Study Results
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[Case 3] Modeling Energy & Regulation Markets

• Energy arbitrage between different market clearing intervals & between different markets

• Less revenue from the energy market

Charge Discharge

SOCmax: 185MWh

Energy Market 

Revenue

Regulation 

Capacity Revenue

Regulation 

Mileage Revenue

Regulation Market 

Total Revenue

Battery SOC

Peak Hours



Case Study Results
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[Case 4] Modeling Energy, Reserve, & Regulation Markets

• Energy arbitrage between different market clearing intervals & between different markets

• Battery collects the least revenue from reserve market

• Significant difference in battery revenue patterns and market outcomes

Charge Discharge

SOCmax: 265MWh

Energy Market 

Revenue

Regulation 

Capacity Revenue

Regulation 

Mileage Revenue

Battery SOC

Reserve Market 

Revenue

Peak Hours

Regulation Market 

Total Revenue



Case Study Results
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[Cases 1~4] Comparison of Battery Total Revenue

• Regulation market is the most profitable

• Gain more profit by participating in more markets

• Participating in reserve increases the revenue from energy market (Cases 3~4)

Energy Market 

Total Revenue

Regulation Capacity 

Total Revenue

Regulation Mileage 

Total Revenue

Reserve Market 

Total Revenue



Part I: Conclusions & Future Directions
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Conclusions

• A bi-level optimization framework:

✓ Operating and revenue patterns of merchant batteries in energy, reserve, and regulation markets

✓ Interactions between battery owner’s profit maximization strategies and system operator’s joint market 

clearing process

Future Directions

• Incorporate more operating details in the bi-level optimization framework: 

✓ AGC signal deployment

✓ Battery degradation cost

✓ Transmission system model

✓ Battery charge/discharge efficiency, etc.



Proposed Solutions
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Market + Batteries:                                                                        

Optimal Battery Participation in Energy & Ancillary Services Markets

Market + DER Aggregators:                                                         

A DSO Design for Wholesale & Retail Markets with DER Aggregators

Market Participation:                                                                    

Machine Learning for System-Wide Electricity Price Forecasting



Background & Motivation
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Impact of DER Aggregators on T&D Operations

• DER aggregators: control distribution-level DERs/loads + participate in transmission-level markets

• Distribution operations: cannot monitor DER aggregators’ controls over DERs/loads ➔ security risks

• Wholesale markets: cannot observe DER locations/availabilities in distribution grids ➔ market uncertainties

Need an Entity to Coordinate DER Aggregators in T&D Operations

• This entity can:

✓ Observe DER locations/availabilities in distribution grids

✓ Monitor DER aggregators’ controls over distribution-level DERs/loads

✓ Coordinate DER aggregators’ offers to wholesale markets



Background & Motivation
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Distribution System Operator (DSO) Framework 

• Operate the retail market + distribution system

• Coordinate DER aggregators’ participation in day-ahead wholesale energy + pay-as-performance regulation 

markets and retail energy markets

• Collect offers from DER aggregators to operate the retail market, and coordinate these offers to construct an 

aggregated offer/bid for participating in the day-ahead wholesale market

• Consider distribution network security while coordinating DER aggregators’ wholesale market participation

• Consider various types of aggregators (for demand response resources, energy storage, EV charging stations, 

and dispatchable DGs)

Need an Entity to Coordinate DER Aggregators in T&D Operations



Proposed DSO Framework
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DSO Problem Formulation

𝒎𝒊𝒏෍

𝒕∈𝑻

𝐓𝐨𝐭𝐚𝐥 𝐃𝐒𝐎 𝐎𝐩𝐞𝐫𝐚𝐭𝐢𝐧𝐠 𝐂𝐨𝐬𝐭

𝒔. 𝒕. Operating constraints for demand response aggregators (DRAGs)

Operating constraints for energy storage aggregators (ESAGs)

Operating constraints for EV charging stations (EVCSs)

Operating constraints for dispatchable DG aggregators (DDGAGs)

Linearized distribution power flow equations

Maximize total social welfare 

in the distribution grid



DSO Framework: The Objective Function
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Min σ𝑡∈𝑇[−𝑃𝑡
𝑠𝑢𝑏𝜋𝑡

𝑒 − 𝑟𝑡
𝑠𝑢𝑏,𝑢𝑝

𝜋𝑡
𝑐𝑎𝑝,𝑢𝑝

− 𝑟𝑡
𝑠𝑢𝑏,𝑑𝑛𝜋𝑡

𝑐𝑎𝑝,𝑑𝑛

−𝑟𝑡
𝑠𝑢𝑏,𝑢𝑝

𝑆𝑡
𝑢𝑝
𝜇𝑡
𝑢𝑝
𝜋𝑡
𝑚𝑖𝑙,𝑢𝑝

− 𝑟𝑡
𝑠𝑢𝑏,𝑑𝑛𝑆𝑡

𝑑𝑛𝜇𝑡
𝑑𝑛𝜋𝑡

𝑚𝑖𝑙,𝑑𝑛

+σ𝑘∈{𝐾2,𝐾4}
𝑃𝑡,𝑘𝜋𝑡,𝑘

𝑒 −σ𝑘3∈𝐾3
𝑃𝑡,𝑘3𝜋𝑡,𝑘3

𝑒

+σ𝑘∈𝐾[ 𝑟𝑡,𝑘
𝑢𝑝
𝜋𝑡,𝑘
𝑐𝑎𝑝,𝑢𝑝

+ 𝑟𝑡,𝑘
𝑑𝑛𝜋𝑡,𝑘

𝑐𝑎𝑝,𝑑𝑛
+ 𝑟𝑡,𝑘

𝑢𝑝
𝑆𝑡
𝑢𝑝
𝜇𝑡
𝑢𝑝
𝜋𝑡,𝑘
𝑚𝑖𝑙,𝑢𝑝

+𝑟𝑡,𝑘
𝑑𝑛𝑆𝑡

𝑑𝑛𝜇𝑡
𝑑𝑛𝜋𝑡,𝑘

𝑚𝑖𝑙,𝑑𝑛] − σ𝑘1∈𝐾1
σ𝑎∈𝐴𝑃𝑎,𝑡,𝑘1𝜋𝑎,𝑡,𝑘1

𝑒 ]

DSO Operating Cost for 

Participating in Wholesale Energy, 

Regulation Capacity & Regulation 

Mileage Markets

DSO Operating Cost for 

Operating Retail Energy 

Markets with Various DER 

Aggregators



DSO Framework: The Constraints
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Operating Constraints for Demand Response Aggregators (DRAGs)

• Limitations for DRAG’s offers to energy, regulation 

capacity-up and capacity-down markets

• Real power offered at each demand block is limited 

within its permitted range 

• The regulation capacity-up and capacity-down offers are 

lower than their maximum permitted values.



DSO Framework: The Constraints
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Operating Constraints for Energy Storage Aggregators (ESAGs)

• Defining ESAG’s power injection

• Decomposing offers to the energy, regulation capacity-

up and capacity-down markets into charging and 

discharging terms

• Limitation for the charge level

• Ensure that ESAG’s offers to the energy, regulation 

capacity-up and capacity-down markets are in their 

permitted ranges.

• Limitation for ESAG’s offers to the energy, regulation 

capacity-up and capacity-down markets with respect to 

the charging and discharging rates.



DSO Framework: The Constraints
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Operating Constraints for EV Charging Stations (EVCSs)

• Limitation for EVCS’s offers to the energy, 

regulation capacity-up and capacity-down markets. 

• Ensuring that EVs are fully charged

Operating Constraints for Dispatchable DG Aggregators (DDGAGs)

• Limitation DDAG’s offers to the energy, regulation 

capacity-up and capacity-down markets.

• Ensure the regulation capacity-up/capacity-down offers 

are lower than maximum ramp-up/ramp-down rates.



DSO Framework: The Constraints
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Linearized Distribution Power Flow Equations [1]

[1] M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss reduction 

and load balancing,” IEEE Trans. Power Del., vol. 4, no. 2, pp. 1401–1407, April 1989.

• Represent the real and reactive power flow

• Represent voltage drop at each line

• Represent real and reactive power limits at each line 

• Represent DSO’s aggregated offers for participating 

in the wholesale energy, regulation capacity-up and 

capacity-down markets.



Case Studies: The Test System 
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• A distribution test system with 5 nodes and 4 lines

• One demand response aggregator @ Node 5

• One dispatchable DG aggregator @ Node 4

• One EV charging station @ Node 3

• One energy storage aggregator @ Node 2



Case Studies: DSO’s Wholesale Market Participation
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Wholesale Energy and Regulation Markets Prices

Trades between DSO and Wholesale Market

• DSO sells energy to the wholesale market @ 

hours 8~9 and 18~21 ➔ wholesale energy 

prices are high

• DSO buys energy from the wholesale market 

@ other hours



Case Studies: Aggregators’ Market Participation
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Hourly Awarded Energy & Regulation Services

for The Energy Storage Aggregator

Hourly Awarded Energy & Regulation Services

for The Dispatchable DG Aggregator 

• Energy storage aggregator prefers offering 

regulation capacity-down service ➔ To 

increase its charging level

• Energy storage aggregator offers regulation 

capacity-down service at hours 13~16, when 

the regulation capacity-down price is lower 

than the energy price in wholesale market

• Dispatchable DG aggregator offers energy 

and regulation capacity services to the 

wholesale market during peak hours

• Dispatchable DG aggregator increases its 

energy provision (without offering regulation 

capacity-up services) @ hour 18, when 

wholesale regulation capacity price is lower 

than wholesale energy price



Case Studies: Retail Market Outcomes
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Hourly Awarded Energy & Regulation Services

for The EV Charging Station

Hourly Awarded Energy & Regulation Services

for The Demand Response Aggregator

• EV charging station purchases energy @ 

hours 16 and 24 ➔Wholesale energy price is 

the lowest of the day

• EV charging station offers regulation 

capacity-up service @ hours 19~22 ➔

Regulation capacity-up price is high, and EV 

charging station can increase EV charge 

levels by offering this service

• Dispatchable DG aggregator does not 

purchase energy from wholesale market at 

peak hours

• Dispatchable DG aggregator purchases 

energy for providing regulation capacity-down 

service



Part II: Conclusions & Future Directions
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Conclusions

• A DSO framework:

✓ Operate the retail energy market and participate in the wholesale energy and regulation markets

✓ Collect offers from various DER aggregators via the retail market, and coordinate these offers to 

construct an aggregated offer/bid for participating in the day-ahead wholesale market

✓ Consider distribution power flow constraints

Future Directions

• Improve the proposed DSO framework: 

✓ Three-phase unbalanced operations

✓ Aggregators with mixed types of resources

✓ Reactive power incentivization via the retail market, etc.



Proposed Solutions
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Market + Batteries:                                                                        

Optimal Battery Participation in Energy & Ancillary Services Markets

Market + DER Aggregators:                                                         

A DSO Design for Wholesale & Retail Markets with DER Aggregators

Market Participation:                                                                    

Machine Learning for System-Wide Electricity Price Forecasting



Background & Motivation
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Electricity Price Forecasting by Market Participants

• Critical for market participants to determine optimal bidding/offering strategies

• No confidential system model parameters/topology/operating conditions available to market participants

➔ Market participants need to forecast LMPs in a purely model-free/data-driven manor

Machine Learning for System-Wide Real-Time LMP Forecasting

• Purely model-free, using only public market data

• No confidential system modeling/operating details

• Spatio-temporal correlations among heterogeneous market data

• Inspired by video prediction techniques



Market Data Images & Videos (PJM AECO Price Zone)
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Heterogeneous Market Data

• Zipcode = 08014

• Hour = 1 AM, May 15, 2019

• LMP = $18.77 $/MWh

• Load = 1.05 MW

• Temperature = 39.59 F

• ……

Heterogeneous Market Data

• Zipcode = 08005

• Hour = 1 AM, May 15, 2019

• LMP $19.01 $/MWh

• Load = 33.42 MW

• Temperature = 41.54 F

• ……

Spatio-Temporal Market Data         Market Data Images & Videos



Example: Market Data Video (PJM AECO Price Zone)
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Hourly LMPs @ PJM AECO Price Zone on 1/30/2019



General Data Structure: 

Market Data Pixels, Images, & Videos
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Different interpolation techniques applied to the same market dataset (56 price nodes)

• [a] Biharmonic spline interpolation ➔ smooth with many different colors

• [b] Nearest neighbor interpolation ➔ less smooth with exactly 56 different colors (1 color/price node)

• [c] Pixel representation ➔ 56 pixels with 56 different colors (1 color/price node)

PJM AECO 

Price Zone
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General Data Structure: 

Market Data Pixels, Images, & Videos

Heterogeneous Market Data

• Zipcode = 08005

• Hour = 1 AM, May 15, 2019

• LMP $19.01 $/MWh

• Load = 33.42 MW

• Temperature = 41.54 F

• ……

RGB Color Codes

• Pixel Location = [6,8]

• Hour = 1 AM, May 15, 2019

• R = Normalized (LMP)

• G = Normalized (Load)

• B = Normalized (Temperature)

• Pixel Color = [R,G,B]

Data

Normalization

PJM AECO 

Price Zone
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General Data Structure: 

Market Data Pixels, Images, & Videos

RGB Color Codes

• Pixel Location = [6,8]

• Hour = 1 AM, May 15, 2019

• R = Normalized (LMP)

• G = Normalized (Load)

• B = Normalized (Temperature)

• Pixel Color = [R,G,B]

Market Data Pixel

• [Market Data Image]: Spatioal variations of market data

• [Market Data Video]: Spatio-temporal variations of market data

Market Data Image & Video

• The smallest addressable element of a market data image

• Pixel color is fully determined by the R, G, B color codes

• R, G, B color codes = percentages of red, green, blue colors in a pixel 

• Let R, G, B color codes = Normalized heterogeneous market data

➔ Color of market data pixel = f(Normalized heterogeneous market data)



Market Data Video: An Example 

(PJM AECO Price Zone, 56 Price Nodes)
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Known Market History Future?



Market Data Video: An Example 

(PJM AECO Price Zone, 56 Price Nodes)
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❖ Market Data Pixel @ Location [𝒊, 𝒋] @ Time 𝒕: 𝒙𝒊,𝒋 𝒕 = 𝒙𝒊,𝒋
𝑹 𝒕 , 𝒙𝒊,𝒋

𝑮 𝒕 , 𝒙𝒊,𝒋
𝑩 𝒕 = 𝒇(𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞𝐝 𝐌𝐚𝐫𝐤𝐞𝐭 𝐃𝐚𝐭𝐚)

❖ Market Data Image @ Time 𝒕: 𝑴×𝑵 matrix 𝑿 𝒕 = 𝒙𝒊,𝒋 𝒕

❖ Market Data Video @ Time 1~T : 𝐗 = {𝑿 𝟏 , … , 𝑿 𝒕 , … , 𝑿(𝑻)}

Known Market History Future?



Deep Video Prediction for System-Wide LMP Forecasting
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❖ Problem Formulation: Given the historical market data video 𝑿 = 𝑿 𝟏 ,… , 𝑿 𝒕 , generate a future 

video frame 𝐘 = ෡𝑿(𝒕 + 𝟏), s.t. the conditional probability 𝒑 ෡𝑿 𝒕 + 𝟏 𝑿 is maximized.

❖ Proposed Solution: Conditional Generative Adversarial Network (GAN) with multiple loss functions.

• Training Procedure: 

GAN-Based Real-Time 

LMP Forecasting



Loss Functions: Learning Spatio-Temporal Correlations
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Discriminator: A CNN trained by minimizing the following loss (distance) function:

❖ Objective: Classify input videos {𝑿, 𝒀} as 

real (1) and {𝑿, ෡𝒀} as generated/fake (0).

❖ Upon Convergence: Generator produces 

realistic ෡𝒀, s.t. Discriminator cannot 

classify ෡𝒀 as generated/fake.



Loss Functions: Learning Spatio-Temporal Correlations

45

Generator: A CNN trained by minimizing the following loss (distance) functions:

❖ Objective: Generate ෡𝒀 = 𝑮(𝑿), s.t. the 

distance b.t. 𝒀 and ෡𝒀 (quantified by 

ℒ𝑮(𝑿, 𝒀)) is minimized.

❖ ℒ𝒑(𝑿, 𝒀): 𝒑-norm distance b.t. 𝒀 & ෡𝒀

❖ ℒ𝒂𝒅𝒗
𝑮 𝑿, 𝒀 : temporal coherency of 

generated video 𝑿, ෡𝒀 = {𝑿, 𝑿(𝑮)}

❖ ℒ𝒈𝒅𝒍(𝑿, 𝒀): spatial correlations among 

market data at neighboring price nodes.

❖ ℒ𝒅𝒄𝒍(𝑿, 𝒀): market data changing directions 

(increment/decrement)



Case Study 1: ISO New England
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❖ Training Data for Case 1: Hourly zonal real-time LMPs, day-ahead LMPs, and demands in the entire 

years of 2016 and 2017 @ 9 price zones of ISO-NE

❖ Testing Data for Case 1: Hourly zonal real-time LMPs in 2018 @ 9 price zones of ISO-NE

Real-Time LMP Forecasting Error @ 9 Price Zones of ISO-NE



Case Study 2: Southwest Power Pool
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Real-Time LMP Forecasting Error @

SHub & NHub Price Zones of SPP

❖ Training Data for Case 2: Hourly zonal real-time LMPs, day-ahead LMPs, demands, and generation 

resource mix data from 6/1/2016 to 7/30/2017

❖ Testing Data for Case 2: Hourly zonal real-time LMPs during 7/31/2017-8/13/2017, 8/21/2017-

9/3/2017, 9/18/2017-10/1/2017, 10/2/2017-10/15/2017

1: Best LMP forecasting result with method proposed in [2]

2: Baseline LMP forecasting from commercial predictor Genscape [2]

[2] A. Radovanovic, T. Nesti, and B. Chen, “A holistic approach to forecasting wholesale energy market prices,” IEEE Transactions on Power Systems, pp. 1–1, 2019.



Part III: Conclusions & Future Directions
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Conclusions

• A General Data Structure: Organizing heterogeneous spatio-temporal electricity market data into market 

data pixels, images, and videos

• Real-Time LMP Forecasting: Formulated as a video prediction problem and solved using conditional GAN 

with multiple loss functions

• A General Framework: Incorporating video/image processing techniques for power system spatio-

temporal data analytics

Future Directions

• Improve LMP Forecasting: electricity price spike forecasting, market (dc OPF) model/parameters 

recovery, etc.

• Other Spatio-temporal data analytics: Apply the general data structure and video/image 

processing techniques to other power system spatio-temporal data analytics
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