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Challenges & Opportunities

Batteries Wholesale Market DER Aggregators

'.h‘flﬁ a0
)

. Services |

. Source: Greteh Media urce: PIM y SOUVCG;'AUtOGrid‘H
W Market Operation W Market Participation
» Energy arbitrage behavior of batteries? » Market bidding/offering strategies?
 Batteries’ impact on market operation? * Forecast Electricity price?

« Coordinate T&D, DER aggregators, and DERs?  Offer multiple services?



Proposed Solutions

1 Market + Batteries:
Optimal Battery Participation in Energy & Ancillary Services Markets

V. Market + DER Aggregators:
A DSO Design for Wholesale & Retail Markets with DER Aggregators

3 Market Participation:
' Machine Learning for System-Wide Electricity Price Forecasting



Proposed Solutions

1 Market + Batteries:
Optimal Battery Participation in Energy & Ancillary Services Markets




Background & Motivation

* Understand the role of utility-scale batteries in daily
system operations and economics

* CO, Reduction * FERC Order 841 « BESS: fast ramping,
* Renewables * BESS - Markets multiple services



Background & Motivation

"> The Role of Utility-Scale Batteries in System Operations & Economics

* The impact of utility-scale batteries on daily market operations

« Utility-scale batteries’ capability of multiple services provision (energy arbitrage, spinning reserve,
frequency regulation services, etc.)

» Operating patterns of merchant batteries in energy, reserve, and pay-as-performance regulation markets

* Interaction between battery owner’s profit maximization strategies and system operator’s joint operating
cost minimization activities (via the market clearing process)
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> Bi-Level Optimization: Battery Owner & System Operator



Problem Formulation: Bi-Level Optimization Framework

Upper-Level Problem — BESS Profit Maximization
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Lower Level Problem — ISO Joint Market Clearing

‘ Real-Time Market Clearing
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» Upper-level Problem: Battery owner’s
profit maximization from real-time energy,
reserve, and pay-as-performance
regulation markets

» Lower-level Problem: System operator’s
joint market clearing process for real-time
energy, reserve, and pay-as-performance
regulation markets



The Upper-Level Problem
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* Upper-Level Objective: Battery owner’s profit
maximization from real-time energy, reserve,
and pay-as-performance regulation markets

» Constraints-1: Battery output power limits

» Constraints-2: Battery state of charge (SOC)
limits



The Lower-Level Problem

\ * Lower-Level Objective: System operator’s joint
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The Lower-Level Problem
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* Lower-Level Objective: System operator’s joint
market clearing process for real-time energy, reserve,
and pay-as-performance regulation markets

» Constraints-3: Operating constraints of
pay-as-performance regulation markets

» Constraints-4: System-wide reserve and
regulation requirements

» Constraints-5: System power balance



Solution Procedure

»»> Convert Bi-Level Problem to Single-Level Problem

* Lower-level problem: linear and convex
» Solve lower-level problem via solving the KKT equations of the lower-level problem

« Write KKT conditions of the Lower-level problem as constraints for the upper-level problem

Single-Level Problem after Conversion
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s.t. Battery power output limits Original Constraints of

Battery state of charge (SOC) limits | YPPer-Level Problem

KKT conditions of the lower-level problem




Case Study: Test System

 Modified PIJM 5-bus test system (Market clearing interval =15 min; Simulation time = 24 hours)
BESS Output Power limit: 40MW
« System’s Load: 1000MW mapped on 2018 PJM load pattern

« BESS Capacity: 400MWh

« System’s Spinning Reserve Requirements: 10% of load in each interval

« System’s Regulation Capacity Requirements: 4% of load in each interval

« System’s Regulation Mileage Requirements: 1.75 times regulation capacity requirements

Generator Base Price pmax PRgyramp PRs;tamp
No. Bid ($/MWh) (MW) (MW) (MW)
Gl 10 400 80 40
G2 14 300 60 30
G3 15 210 42 21
G4 30 350 70 35
G5 40 270 54 27
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Case Study Results

» [Case 1] Modeling Energy Market Only

» Energy arbitrage between different market clearing intervals
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Case Study Results
> [Case 2] Modeling Energy & Reserve Markets

* Energy arbitrage between different market clearing intervals & between different markets
* Energy arbitrage between different markets at the same market clearing interval (during charging period)
» Lower state of charge (SOC) compared to Case 1 (with energy market only)
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Case Study Results
» [Case 3] Modeling Energy & Regulation Markets

» Energy arbitrage between different market clearing intervals & between different markets
» Less revenue from the energy market
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Case Study Results
» [Case 4] Modeling Energy, Reserve, & Regulation Markets

» Energy arbitrage between different market clearing intervals & between different markets
 Battery collects the least revenue from reserve market

« Significant difference in battery revenue patterns and market outcomes
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Case Study Results

P> [Cases 1~4] Comparison of Battery Total Revenue

» Regulation market is the most profitable
« Gain more profit by participating in more markets
 Participating in reserve increases the revenue from energy market (Cases 3~4)
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Part I: Conclusions & Future Directions

¥ Conclusions

» A bi-level optimization framework:
v' Operating and revenue patterns of merchant batteries in energy, reserve, and regulation markets

v" Interactions between battery owner’s profit maximization strategies and system operator’s joint market
clearing process

"> Future Directions

* Incorporate more operating details in the bi-level optimization framework:
v' AGC signal deployment
v’ Battery degradation cost
v" Transmission system model

v’ Battery charge/discharge efficiency, etc.



Proposed Solutions

V. Market + DER Aggregators:
& A DSO Design for Wholesale & Retail Markets with DER Aggregators



Background & Motivation

W Impact of DER Aggregators on T&D Operations

 DER aggregators: control distribution-level DERs/loads + participate in transmission-level markets
* Distribution operations: cannot monitor DER aggregators’ controls over DERs/loads =» security risks

 Wholesale markets: cannot observe DER locations/availabilities in distribution grids = market uncertainties

\ 4

»> Need an Entity to Coordinate DER Aggregators in T&D Operations

* This entity can:
v' Observe DER locations/availabilities in distribution grids
v" Monitor DER aggregators’ controls over distribution-level DERs/loads

v Coordinate DER aggregators’ offers to wholesale markets



Background & Motivation

> Need an Entity to Coordinate DER Aggregators in T&D Operations

\ 4

> Distribution System Operator (DSQ) Framework

« Operate the retail market + distribution system

» Coordinate DER aggregators’ participation in day-ahead wholesale energy + pay-as-performance regulation
markets and retail energy markets

 Collect offers from DER aggregators to operate the retail market, and coordinate these offers to construct an
aggregated offer/bid for participating in the day-ahead wholesale market

« Consider distribution network security while coordinating DER aggregators’ wholesale market participation

» Consider various types of aggregators (for demand response resources, energy storage, EV charging stations,
and dispatchable DGSs)



Proposed DSO Framework

DSO Problem Formulation

minZ[Total DSO Operating Cost| <
teT

Maximize total social welfare
in the distribution grid

s.t. Operating constraints for demand response aggregators (DRAGS)

Operating constraints for energy storage aggregators (ESAGS)

Operating constraints for EV charging stations (EVCSSs)

Operating constraints for dispatchable DG aggregators (DDGAGS)

Linearized distribution power flow equations




DSO Framework: The Objective Function

DSO Operating Cost for
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DSO Framework: The Constraints

> Operating Constraints for Demand Response Aggregators (DRAGS)
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Limitations for DRAG’s offers to energy, regulation
capacity-up and capacity-down markets

Real power offered at each demand block is limited
within its permitted range

The regulation capacity-up and capacity-down offers are
lower than their maximum permitted values.



DSO Framework: The Constraints

> Operating Constraints for Energy Storage Aggregators (ESAGS)

—
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Defining ESAG’s power injection

Decomposing offers to the energy, regulation capacity-
up and capacity-down markets into charging and
discharging terms

Limitation for the charge level

Ensure that ESAG’s offers to the energy, regulation
capacity-up and capacity-down markets are in their
permitted ranges.

Limitation for ESAG’s offers to the energy, regulation
capacity-up and capacity-down markets with respect to
the charging and discharging rates.



DSO Framework: The Constraints

> Operating Constraints for EV Charging Stations (EVCSSs)
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Limitation for EVCS'’s offers to the energy,
regulation capacity-up and capacity-down markets.

Ensuring that EVs are fully charged

Limitation DDAG’s offers to the energy, regulation
capacity-up and capacity-down markets.

Ensure the regulation capacity-up/capacity-down offers
are lower than maximum ramp-up/ramp-down rates.



DSO Framework: The Constraints

P> Linearized Distribution Power Flow Equations [1]
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* Represent the real and reactive power flow
* Represent voltage drop at each line
* Represent real and reactive power limits at each line

 Represent DSO’s aggregated offers for participating
in the wholesale energy, regulation capacity-up and
capacity-down markets.

[1] M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss reduction
and load balancing,” IEEE Trans. Power Del., vol. 4, no. 2, pp. 1401-1407, April 1989.



Case Studies: The Test System

1
Main

Substa‘tionl

0.06+j0.04 ' 0.14+j0.14 '0.27+j0.27 0.27+j0.42|

A distribution test system with 5 nodes and 4 lines
One demand response aggregator @ Node 5
One dispatchable DG aggregator @ Node 4

One EV charging station @ Node 3

One energy storage aggregator @ Node 2



Price ($/MW)

Wholesale share (MW)

Case Studies: DSO’s Wholesale Market Participation

Wholesale Energy and Regulation Markets Prices
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« DSO sells energy to the wholesale market @
hours 8~9 and 18~21 = wholesale energy

prices are high

« DSO buys energy from the wholesale market

@ other hours



ESAG share (MW)

Case Studies: Aggregators’ Market Participation

Hourly Awarded Energy & Regulation Services
for The Energy Storage Aggregator
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Energy storage aggregator prefers offering
regulation capacity-down service = To
increase its charging level

Energy storage aggregator offers regulation
capacity-down service at hours 13~16, when
the regulation capacity-down price is lower
than the energy price in wholesale market
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Hourly Awarded Energy & Regulation Services

for The Dispatchable DG Aggregator
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Dispatchable DG aggregator offers energy
and regulation capacity services to the
wholesale market during peak hours

Dispatchable DG aggregator increases its
energy provision (without offering regulation
capacity-up services) @ hour 18, when
wholesale regulation capacity price is lower
than wholesale energy price
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Case Studies: Retaill Market Outcomes

Hourly Awarded Energy & Regulation Services
for The EV Charging Station
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EV charging station purchases energy @
hours 16 and 24 = Wholesale energy price is
the lowest of the day

EV charging station offers regulation
capacity-up service @ hours 19~22 =
Regulation capacity-up price is high, and EV
charging station can increase EV charge
levels by offering this service

Hourly Awarded Energy & Regulation Services
for The Demand Response Aggregator
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Dispatchable DG aggregator does not
purchase energy from wholesale market at
peak hours

Dispatchable DG aggregator purchases
energy for providing regulation capacity-down
service




Part Il: Conclusions & Future Directions

»» Conclusions

« ADSO framework:
v' Operate the retail energy market and participate in the wholesale energy and regulation markets

v’ Collect offers from various DER aggregators via the retail market, and coordinate these offers to
construct an aggregated offer/bid for participating in the day-ahead wholesale market

v Consider distribution power flow constraints

"> Future Directions

* Improve the proposed DSO framework:
v Three-phase unbalanced operations
v’ Aggregators with mixed types of resources

v Reactive power incentivization via the retail market, etc.



Proposed Solutions

3 Market Participation:
Machine Learning for System-Wide Electricity Price Forecasting



Background & Motivation

P> Electricity Price Forecasting by Market Participants

« Critical for market participants to determine optimal bidding/offering strategies

* No confidential system model parameters/topology/operating conditions available to market participants

=> Market participants need to forecast LMPs in a purely model-free/data-driven manor

\ 4

"> Machine Learning for System-Wide Real-Time LMP Forecasting

» Purely model-free, using only public market data
* No confidential system modeling/operating details
« Spatio-temporal correlations among heterogeneous market data

* Inspired by video prediction techniques



Market Data Images & Videos (PJM AECO Price Zone)

Heterogeneous Market Data May 15th 01:00

« Zipcode = 08014

19.C

* Hour =1AM, May 15, 2019

18.€

 Load =1.05 MW
« Temperature = 39.59 F

118.7

1 18.€

!
I
!
|+ LMP=$18.77 $/MWh
I
!
I
l

Heterogeneous Market Data

« Zipcode = 08005
 Hour =1AM, May 15, 2019

« LMP $19.01 $/MWh
 Load =33.42 MW
« Temperature =41.54 F

Spatio-Temporal Market Data » Market Data Images & Videos




Example: Market Data Video (PJM AECQO Price Zone)

Date=01/30/2019,Hour=1
1100

1000
900
800
700
600
500

400

LMP deviation from $24.4936

300

Hourly LMPs @ PJM AECO Price Zone on 1/30/2019



General Data Structure:
Market Data Pixels, Images, & Videos

Pp> Different interpolation techniques applied to the same market dataset (56 price nodes)

May 15th 01:00 May 15th 01:00

PIJM AECO
Price Zone

(2) (b) o ()

« [a] Biharmonic spline interpolation =» smooth with many different colors
« [b] Nearest neighbor interpolation = less smooth with exactly 56 different colors (1 color/price node)

* [c] Pixel representation =» 56 pixels with 56 different colors (1 color/price node)



General Data Structure:
Market Data Pixels, Images, & Videos

May 15th 01:00 May 15th 01:00 I %

PJM AECO
Price Zone

1885
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dg
des
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) =i @ : eode '2.‘ ."

T . o .

| 4 D | 3
a ) ! 4 |

< I " po. 1 < Zipcodesly1 2

— e

W \Jt
e

Heterogeneous Market Data RGB Color Codes

I« Zipcode = 08005 ' : « Pixel Location =[6,8] :
|« Hour = 1AM, May 15, 2019 | |+ Hour = 1AM, May 15, 2019 |
|+ LMP $19.01 $/MWh ' Data ' [* R =Normalized (LMP) |
I+ Load =33.42 MW o e e e i ¢ G = NOTMIGlIZED (LOAG) :
|« Temperature =41.54 F Normalization I L+ B =Normalized (Temperature) |
: . . "7+ Pixel Color = [R,G,B] |



General Data Structure:
Market Data Pixels, Images, & Videos

P Market Data Pixel

The smallest addressable element of a market data image

Pixel color is fully determined by the R, G, B color codes

R, G, B color codes = percentages of red, green, blue colors in a pixel

Let R, G, B color codes = Normalized heterogeneous market data

=>» Color of market data pixel = f(Normalized heterogeneous market data)

RGB Color Codes

P> Market Data Image & Video
* Pixel Location =[6,8]

« [Market Data Image]: Spatioal variations of market data * Hour =1AM, May 15, 2019

|
: |
: !
|

| .
- [Market Data Video]: Spatio-temporal variations of market data | |* R=Normalized (LMP) '
lef © G = Normalized (Load) :
P |
|
: !

B = Normalized (Temperature)
* Pixel Color = [R,G,B]




Market Data Video: An Example
(PJM AECO Price Zone, 56 Price Nodes)

Zipcode: 08014 Zipcode: 08014 Zipcode: 08014 Zipcode: 08014 Zipcode: 08014 Zipcode: 08014
LMP:18.77 $/MWh LMP:15.89 $/MWh LMP:15.07 $/MWh LMP:17.51 $MWh LMP:16.83 $/MWh LMP:17.22 $/MWh
Temperature:39.59 F Temperature:37.5 F Temperature:35.86F  Temperature:41.28 F  Temperature:54.82 F Temperature:62.95 F
Load:1.05 MW Load:1.00 MW Load:1.03 MW Load:1.16 MW Load:1.08 MW Load:0.91 MW
Zipcode: 08005 Zipcode: 08005 Zipcode: 08005 Zipcode: 08005 Zipcode: 08005 Zipcode: 08005
LMP:19.01 $MWh LMP:16.06 $/MWh LMP:15.18$/MWh LMP:17.68 $MWh LMP:17.03 $/MWh LMP:17.63 $/MWh
Temperature:41.54 F|| Temperature:39.22 F Temperature:37.17 F Temperature:41.11 F || Temperature:52.36 F Temperature:59.87 F
Load:33.42 MW _ Load:31.65 MW Load:32.55 MW Load:36.83 MW Load:34.36 MW . Load:28.84 MW

X(01:00) X(03:00) X(05:00) X(07:00) X(09:00)

& \\5\ \; '\,
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Market Data Video: An Example
(PJM AECO Price Zone, 56 Price Nodes)

Zipcode: 08005 Zipcode: 08005 Zipcode: 08005 Zipcode: 08005 Zipcode: 08005 Zipcode: 08005
LMP:19.01 $/MWh LMP:16.06 $/MWh LMP:15.18$/MWh LMP:17.68 $/MWh LMP:17.03 $/MWh LMP:17.63 $/MWh
Temperature:41.54 F || Temperature:39.22 F Temperature:37.17 F Temperature:41.11 F || Temperature:52.36 F Temperature:59.87 F
Load:33.42 MW _ Load:31.65 MW Load:32.55 MW _ Load:36.83 MW Load:34.36 MW Load:28.84 MW

X(01:00) X(03:00) X(05:00) X(07:00) X(09:00)
Known Market History el e o Future?

/

< Market Data Pixel @ Location [i,j] @ Time t: x;;(t) = [x;(t), x;(t),x};(®)| = f(Normalized Market Data)
% Market Data Image @ Time t: M x N matrix X(t) = [x;;(¢)]

% Market Data Video @ Time 1~T : X = {X(1), ..., X(¢), ..., X(T)}



Deep Video Prediction for System-Wide LMP Forecasting

< Problem Formulation: Given the historical market data video X = {X(1), ..., X(t)}, generate a future
video frame Y = X(t + 1), s.t. the conditional probability p(X(t + 1)|X) is maximized.

< Proposed Solution: Conditional Generative Adversarial Network (GAN) with multiple loss functions.

« Training Procedure: i E Generated Next Frame - '
GAN-Based Real-Time Historlcal Frames ¥ = 6(X) Generated Video
LMP Forecasting SR O \\‘l | / {X,¥} = (X, G(X)}

. —I | R i —— Real (1) or
i %i | p

Generated (0)
Real Video

{X,Y} = {X,X(t + 1)}

> |

Real Next Frame
Y={X(+1)}




Loss Functions: Learning Spatio-Temporal Correlations

PP Discriminator: A CNN trained by minimizing the following loss (distance) function:

< Objective: Classify input videos {X,Y} as
real (1) and {X,Y} as generated/fake (0).
where L. is the binary cross-entropy:

< Upon Convergence: Generator produces
realistic ¥, s.t. Discriminator cannot
classify Y as generated/fake.

Loce(I5.8) = = S [Klog(S;) + (1 — K;)log(1 — Si)] (5)

: ; EEE - |
. , Generated Next Frame —|
Historical Frames enerator] Y =G6X) Generated Video
X = {X(1), ..., X(0)} \ / {X.Y} = {X,6(x)}
| r

Real Next Frame
Y={X({t+ 1)}

Real (1) or
Generated (0)

Real Video
XY} ={XX(t+ 1)}



Loss Functions: Learning Spatio-Temporal Correlations

P> Generator: A CNN trained by minimizing the following loss (distance) functions:

L LOXY) =Aaae £S5 (XY ) + A £, (X, Y)

aduv

+ /\gu'F ﬁy(h’(‘}(- }/r) + /\(h-a’ﬁdr_:f (X Y)
- Lp(X,Y) =6(G(X).Y) = [GX) - Y]

(*Xr' }*) = ﬁfw'f'(D({‘X‘ (;(‘Y)}) 1)

aduv

1
' oG
1
1

L Loa(X,Y) = Lya(Y.Y)
= > ¥ — Yi15] — [¥as — Yi,4]I°
N

+ Vi -1 — Yijs| — |Yij—1 — Yigl®

< Objective: Generate Y = G(X), s.t. the
distance b.t. Y and ¥ (quantified by
LE(X,Y)) is minimized.

¢ L,(X,Y): p-norm distanceb.t. Y & ¥

< L&, (X,Y):temporal coherency of

generated video {X, Y} = {X, X(G)}

¢ Lga(X,Y): spatial correlations among

market data at neighboring price nodes.

(increment/decrement)

o Laa(X,Y): market data changing directions



Case Study 1: ISO New England

< Training Data for Case 1: Hourly zonal real-time LMPs, day-ahead LMPs, and demands in the entire
years of 2016 and 2017 @ 9 price zones of ISO-NE

)

< Testing Data for Case 1. Hourly zonal real-time LMPs in 2018 @ 9 price zones of ISO-NE

RTLMP at VT Price Zone in ISO-NE in 2018

800 |- ——actual price i
600 —predicted price||

RTLMP $/MWh
N B
0060

p.\f.":.‘:

Real-Time LMP Forecasting Error @ 9 Price Zones of ISO-NE

Price Zone | VI HN ME WC Sys- NE CT RI SE
MA tem MA MA
MAPE (%) | 11.03 11.25 11.82 10.99 11.06 11.05 11.04 11.01 11.05




Case Study 2: Southwest Power Pool

)

resource mix data from 6/1/2016 to 7/30/2017

< Training Data for Case 2: Hourly zonal real-time LMPs, day-ahead LMPs, demands, and generation

< Testing Data for Case 2: Hourly zonal real-time LMPs during 7/31/2017-8/13/2017, 8/21/2017-

9/3/2017, 9/18/2017-10/1/2017, 10/2/2017-10/15/2017

SHub

%]

en)

(@]
T

—actual price
—predicted price

RTLMP $/MWh

Real-Time LMP Forecasting Error @
SHub & NHub Price Zones of SPP

—actual price

9

jan]

<
T

Approach MAPE (%) for MAPE (%) for
SHub Price Zone NHub Price Zone
ALG+M! 25.4 36.9
Genscape? 21.7 28.2
Case 2 17.7 19.1

A —vpredicted price
0 X | !
Y o T

RTLMP $/MWh
o
o

1: Best LMP forecasting result with method proposed in [2]
2: Baseline LMP forecasting from commercial predictor Genscape [2]

[2] A. Radovanovic, T. Nesti, and B. Chen, “A holistic approach to forecasting wholesale energy market prices,” IEEE Transactions on Power Systems, pp. 1-1, 2019.



Part Ill: Conclusions & Future Directions

¥ Conclusions

» A General Data Structure: Organizing heterogeneous spatio-temporal electricity market data into market
data pixels, images, and videos

» Real-Time LMP Forecasting: Formulated as a video prediction problem and solved using conditional GAN
with multiple loss functions

» A General Framework: Incorporating video/image processing techniques for power system spatio-
temporal data analytics

"> Future Directions

» Improve LMP Forecasting: electricity price spike forecasting, market (dc OPF) model/parameters
recovery, etc.

» Other Spatio-temporal data analytics: Apply the general data structure and video/image
processing techniques to other power system spatio-temporal data analytics
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