Coordinated Wide-Area Polytopic Control Design using Linear Matrix Inequality

Anamitra Pal, Arizona State University (ASU) Email: <u>Anamitra.Pal@asu.edu</u>

PSERC Webinar April 21, 2020

Related Publications

- P. Gupta, A. Pal, C. Mishra, and T. Wang, "Design of a coordinated wide area damping controller by employing partial state feedback," in *Proc. IEEE Power Eng. Soc. General Meeting*, Atlanta, GA, pp. 1-5, 4-8 Aug. 2019.
- T. Wang, **A. Pal**, J. S. Thorp, and Y. Yang, "Use of polytopic convexity in developing an adaptive inter-area oscillation damping scheme," *IEEE Trans. Power Syst.*, vol. 32, no. 4, pp. 2509-2520, Jul. 2017.
- T. Wang, **A. Pal**, J. S. Thorp, Z. Wang, J. Liu, and Y. Yang, "Multi-polytope based adaptive robust damping control in power systems using CART," *IEEE Trans. Power Syst.*, vol. 30, no. 4, pp. 2063-2072, Jul. 2015.
- A. Pal, J. S. Thorp, S. S. Veda, and V. A. Centeno, "Applying a robust control technique to damp low frequency oscillations in the WECC," *Int. J. Elect. Power Energy Syst.*, vol. 44, no. 1, pp. 638-645, Jan. 2013.
- A. Pal, and J. S. Thorp, "Co-ordinated control of inter-area oscillations using SMA and LMI," in *Proc. IEEE Power Eng. Soc. Conf. Innovative Smart Grid Technol.*, Washington D.C., pp. 1-6, 16-20 Jan. 2012.

Introduction–Low Frequency Oscillations

New Challenges in a Modern Grid

- Increased penetration of renewables
- Decommissioning of large thermal units

Overview of Damping Controllers

Flexible Alternating Current **Transmission System (FACTS)**^{[7]-[8]} **Coordinated** control implemented ^{[12]-[14]} Primarily for voltage • Wide-area signals **Power System** support employed [15]-[19] Stabilizers (PSSs)^{[5]-[6]} Supplementary Damping Control (SDC) added **Methods** Traditional control Larsen & Swan High-Voltage DC systems, for damping local Optimization Energy Storage Systems [9]-[11] modes techniques such as Require careful particle swarm SDC added for damping tuning for damping optimization, genetic inter-area modes inter-area modes algorithms Controlled modulation of

power flows

 Linear Matrix Inequality (LMI) based control

Motivation and Objectives

- Most control designs:
 - Focused on only one type of controller and/or were operating point specific
 - Required changing the configurations of existing controls
 - Had higher-order complexity

Objectives

- To coordinate individual controllers such as HVDC based SDCs, Static VAr Compensators (SVCs), and PSSs
- To design a coordinated wide-area damping controller (CWADC) using LMIbased polytope having mixed H_{∞}/H_2 control
- To develop a methodology for the selection of suitable stabilizing signals for the CWADC
- To provide flexibility in selection of feedback signals

Mathematical Background-State Space Model

State-space model with H_{∞}/H_2 * formulation

$$T_{\infty} = (C_1 + D_{12}K)(sI - A - B_2K)^{-1}B_1 + D_{11}$$

$$T_2 = (C_2 + D_{22}K)(sI - A - B_2K)^{-1}B_1$$

* The H_{∞} analysis is used to evaluate how robust a system is when exposed to dynamic uncertainty. The H_2 design parameters are tailored more towards measuring the control effort and providing disturbance rejection.

$$\dot{x} = Ax + B_1\omega + B_2u$$
$$z_{\infty} = C_1x + D_{11}\omega + D_{12}u$$
$$z_2 = C_2x + D_{22}u$$
$$y = C_yx + D_{y1}\omega + D_{y2}u$$

where: x is the system state u is the control ω is a disturbance z_{∞} and z_2 are for H_{∞}/H_2 optimization y is the system output

6

Polytope Formation-Extension to Multiple Operating Points

Three vertex polytope

Vertex of each polytope, S_i

Theoretical Background-Linear Matrix Inequality

An LMI is any constraint of the form A(p) ≔ A₀ + p₁A₁ + p₂A₂ + ... + p_nA_n < 0 where p₁, p₂, ..., p_n are unknown vectors comprising of optimization variables; A₀, A₁, ..., A_n are known symmetric matrices; < 0 implies "negative definite"

	Primary Advantage		Primary Disadvantage
•	Any solution to a problem obtained using LMIs is a global optimum	•	Inherent computational complexity of the optimization

LMI for the State Space Model

$$\begin{bmatrix} A_{i}X + XA_{i}^{T} + B_{i2}Y + Y^{T}B_{i2}^{T} & B_{i1} & XC_{i1}^{T} + Y^{T}D_{i12}^{T} \\ B_{i1}^{T} & -I & D_{i11}^{T} \\ C_{i1}X + D_{i12}Y & D_{i11} & -\gamma^{2}I \end{bmatrix} < 0$$

$$\begin{bmatrix} Q & C_{i2}X + D_{i22}Y \\ XC_{i2}^{T} + Y^{T}D_{i22}^{T} & X \end{bmatrix} > 0$$

$$(V \otimes W) + (W \otimes (A_{i}X + B_{i2}Y)) + W^{T} \otimes (A_{i}X + B_{i2}Y)^{T} < 0$$

where X is the Lyapunov matrix, Q is a positive definite matrix, and \otimes is the Kronecker product^{*}

* http://en.wikipedia.org/wiki/Kronecker_product

Model Reduction Technique

Selective Modal Analysis

• An iterative process that simplifies the dynamic model to the oscillatory modes of interest

15

$$*A = \begin{bmatrix} A_{1} & A_{2} & & & & \\ 0 & \omega_{0}I & 0 & & 0 \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}$$

$$A_{3} & A_{4} = \begin{bmatrix} A_{1} & A_{2} & A_{2} & A_{2} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}$$

$$Black Dots: Eigenvalues of A \\ Red Squares: Eigenvalues of A_{1} + M_{0} \\ Blue Circles: Eigenvalues of A_{1} + M_{1} \\ Green Circles: Eigenvalues of A_{1} + M_{2} \\ Red Circles: Eigenvalues of A_{1} + M_{2} \\ Red$$

* A is the state matrix of the original system, while

 $A_1 + M_i$ is the state matrix of the reduced system, where M_0 is the null matrix

0.1

-0.2

-0.3

Model Reduction Technique

Selective Modal Analysis

Comparison of LMI optimization without and with SMA approach on the 4

machine – 2 area system	LMI Control	LMI Control + Traditional SMA	
System Size (A/A ₁)	19 × 19	6 × 6	
Size of individual LTI system	24×22	11 × 9	
Size of Polytopic System	24×116	11×51	
Size of Closed Loop System	24×111	11×46	
CPU Time*** (seconds)	29.286383	1.209831	

*** The computations were performed on an Intel (R) Core [™] i5 Processor having a speed of 2.40 GHz and an installed memory (RAM) of 5.86 GB

Control Effort Minimization-Partial State Feedback

 Focus-To control generator states which are influencing a greater number of modes by having higher participation in them

Enhanced SMA-Proposed methodology for generator selection [20]

Identify *minimum* number of states that must be controlled for improving stability of the system

Proposed Control using Partial State Feedback

Controller Synthesis

• **Bi-level** controller design

Flexibility of Feedback Selection

 Taking PMU measurements from alternate locations in case the primary locations encounter a problem ^[20]

Coordinated controller can *switch* between the primary and alternate control sets in case the data quality of the primary set deteriorates

Small Test System

16 machine, 68-bus system

• System Details:

- Represents the reduced-order equivalent model of five separate areas
- Two types of actuators, namely, DC lines and SVCs employed for implementing the control
- The DC lines are modeled as active power and reactive power injections
- SVC is modeled as a reactive power injection
- Type of Analysis Performed: *Modal analysis* for testing the performance of CWADC

Test Cases

Number	Contingency Details		
1	Base Case		
2	Flow in line 50-52 is increased from 700 to 900		
3	Flow in line 50-52 is decreased from 700 to 455		
4	Outage of Tie-line 1-2		
5	10% increase in inertia of Machine at Bus 66		
6	10% decrease in inertia of Machine at Bus 66		
7	All loads decreased in the system to 90%		
8	All loads increased in the system to 103%		

Enhanced SMA Results

Number	Sequence for dropping generators	Reduction in stabilizing signals(%)
1	63, 62, 60, 61, 64, 53, 55, 57	50
2	63, 62, 64, 53, 55, 57	37.5
3	63, 62, 60, 64, 53, 55, 57	43.75
4	63, 62, 64, 53, 60, 55, 57	43.75
5	63, 62, 64, 53, 55, 60, 57	43.75
6	63, 62, 64, 53, 55, 57	37.5
7	63, 62, 64, 53, 55, 57	37.5
8	63, 62, 64, 53, 55, 57	37.5

- The number of machines which can be dropped varies with the test cases
- Minimum number of same six machines were chosen to be dropped, reducing the state feedback signals by 37.5%

Designed LMI Control

Large Test System

Reduced order WECC Model

• System Details:

- Two-axis model of synchronous machines with type ST1 excitation control, PSS models, and turbine-governor models
- Two wind farms represented using Type 3 WTG generator and electric control modules
- HVDC lines representing the multi-terminal Pacific DC Intertie (PDCI) and the twoterminal Intermountain Power Project (IPP);
 SDC is added to the multi-terminal DC line
- One **SVC** is also present in the system

Reduced Order WECC System

Different Types of Controllers

Test Cases-Reduced Order WECC System

Focus: To create change in power transfers in and around WECC

Intertie Path #26

	Parameter V	/ariation
Number	Generation	Load
1	No Change	No Change
2	#91-Increase by 250 MW	#71-Increase by 250 MW
3	#91-Decrease by 250 MW	#71-Decrease by 500 MW
4	#8881-Increase by 250 MW	#69-Increase by 250 MW
5	#8881-Decrease by 500 MW	#69-Decrease by 500 MW
6	#8881-Increase by 250 MW	$#79 \ln \alpha \cos \alpha \sin 400 N/M$
	#91-Increase by 250 MW	#78-Increase by 400 MW
7	#8881-Decrease by 250 MW	#79 Decrease by 500 M/M
	#91-Decrease by 250 MW	 #71-Decrease by 500 MW #69-Increase by 250 MW #69-Decrease by 500 MW #78-Increase by 400 MW #78-Decrease by 500 MW

Results-Open-loop Eigenvalue Analysis

Case	Damping of critical modes(%)			
No.	Mode 1	Mode 2	Mode 3	
v ₁	3.71% @1.737Hz	4.03% @ $0.934Hz$	4.14% @1.115Hz	
v ₂	0.27% @ $0.397Hz$	2.46% @0.768Hz	2.98% @ $0.923Hz$	
V3	3.74% @1.736Hz	4.05% @0.939Hz	4.07% @1.117Hz	
v4	3.63% @1.742Hz	4.04% @ $0.926Hz$	4.08% @1.114Hz	
V ₅	3.71% @1.737Hz	4.03% @ $0.934Hz$	4.14% @1.115Hz	
v ₆	-0.36% @0.399Hz	2.39% @0.766Hz	2.97% @1.743Hz	
V7	3.23% @0.430Hz	3.36% @0.787Hz	3.47% @1.206Hz	

Open-loop eigenvalues

Results-Controller Interactions

Case	Critical Mode	Damping(%)		
No.	from Table I	$\mathbf{PSS} + \mathbf{SVC}$	DC-SDC + PSS + SVC	
v_1	Mode1	3.51	3.71	
v ₂	Mode1	3.47	0.27	
v ₃	Mode1	3.54	3.74	
v ₄	Mode1	3.42	3.63	
v_5	Mode1	3.51	3.71	
v ₆	Mode1	3.46	-0.36	
V7	Mode1	3.49	3.23	

Controller Interactions

Results-System Reduction

Enhanced SMA Results using Primary Control Set

Results-System Reduction

Enhanced SMA Results using Primary Control Set

Results-Modal Analysis

Designed LMI Control using Primary Control Set

Small Disturbance-Time-Domain Analysis

Disturbance-Simultaneous increase of load at bus #78 by 200 MW and a decrease in load at bus #71 by 400 MW at time, t = 0.5 sec

Small Disturbance-Controller Outputs*

Results-Alternate Signal Control Set

Designed LMI Control using an Alternate Control Set

Small Disturbance-Alternate Signal Control Set

Small Disturbance-Incorporation of Delays

Random delay between 25 ms-100 ms added to control signals

Extensions to Multi-Polytopic Design

- Deviation of an operating point post-contingency is reflected in the measurements
- Trajectory that the current ^a point follows to reach its destination is a measure of the domain-ofattraction of the different equilibrium points

• By employing this trajectory as a guideline, the most suitable equilibrium point for different disturbances can be identified

Multi-Polytopic Design using CART^[21]

• CART used to identify the polytope inside which the operating point lay

Test cases for 16 machine, 68-bus system

Number	Contingency Details
1	Base case
2	One of double circuit line 1-2 is outage
3	One of double circuit line 8-9 is outage
4	Load of group 4 increased by 20%
5	Load of group 5 increased by 10%
6	Generation of group 4 increased by 20%
7	Generation of group 5 increased by 10%
0	10% constant power + 10% constant current
0	+ 80% constant impedance
0	20% constant power + 40% constant current
9	+ 40% constant impedance
10	Load of group 4 decreased by 20%
11	Generation of group 4 decreased by 10%
12	Generation of group 5 decreased by 10%
13	Load of group 5 decreased by 10%

Results-16 Machine, 68-Bus System^[21]

Multi-Polytopic Design using Kalman Filters^[16]

Results-Reduced Order WECC System^[16]

Test Cases					
Vortov			deg		
Vertex	P1	P2	P3	<u> </u>	
INO.	(Load 1-10)	(Outages of line 118-124)	(Generation 1-3)	5	
v1	100%	No outages	100%	angle	
v2	95%	One (out of the four) line is out	100%		
v3	105%	Three (out of the four) lines are out	100%		
v4	100%	One (out of the four) line is out	95%		
v5	100%	One (out of the four) line is out	105%		

P3

vl

Polytopes in parameter space for the Reduced Order WECC System

v4

Polytope 2

v3

P2

Polytope 1

Dynamic responses of closed-loop system for unknown scenario with no control, fixed control, and adaptive control

Conclusions

- Designed coordinated controls for mitigating inter-area oscillations using an enhanced SMA and LMI-based polytopic design
- Coordinated operations of different controllers already present in the system
- Differentiated non-critical set of generators from the critical set, and created a partial state feedback for the complete system, with the aid of only the critical set
- Identified alternate feedback sources in case of loss of primary feedback signals
- Effectively damped critical oscillatory modes under changing operating conditions

Ongoing Work

- Solve the control problem using a machine learning (ML)-based polytopic control design:
 - Take advantage of large amounts of historical data being collected
 - Combine LMI-based control with load and renewable generation forecasts to better account for systemic uncertainty
- An ML-based approach would:
 - *Relieve* the computational burden of LMIs
 - Offer scalable performance

References

- 1. F. Aboytes, F. Sanchez, A. M. Cabra, and J. G. Castro, "Dynamic stability analysis of the interconnected Colombia-Venezuela power system," *IEEE Trans. Power Syst.*, vol. 15, no. 1, pp. 376–381, 2000.
- 2. "1996 system disturbances: Review of selected 1996 electricity system disturbances in North America." North American Electric Reliability Council. Available: <u>https://www.nerc.com</u>, 2002.
- 3. E. Martinez and A. Messina, "Modal analysis of measured inter-area oscillations in the Mexican interconnected system: The july 31, 2008 event," in 2011 IEEE Power & Energy Soc. General Meeting, pp. 1–8, IEEE, 2011.
- 4. T. Fritch, "El oscillation event." NASPI Meeting. Avaialble: https://www.naspi.org/sites/default/files/2019-04/01_alam_ei_large_oscillation_event_20190417.pdf, 2019.
- 5. E. Larsen and D. Swann, "Applying power system stabilizers part i: general concepts, part ii: performance objectives and tuning concepts, part iii/;practical considerations," *IEEE Trans. Power App. Syst.*, no. 6, pp. 3017–3046, 1981.
- 6. R. Grondin, I. Kamwa, G. Trudel, L. Gerin-Lajoie, and J. Taborda, "Modeling and closed-loop validation of a new PSS concept, the multi-band PSS," in 2003 *IEEE Power Eng. Soc. General Meeting* (IEEE Cat. No. 03CH37491), vol. 3, pp. 1804–1809, IEEE, 2003.
- 7. M. Zarghami, M. L. Crow, and S. Jagannathan, "Nonlinear control of FACTS controllers for damping interarea oscillations in power systems," *IEEE Trans. Power Del.*, vol. 25, no. 4, pp. 3113–3121, 2010. 40

References

- 8. Q. Liu, V. Vittal, and N. Elia, "LPV supplementary damping controller design for a thyristor controlled series capacitor (TCSC) device," *IEEE Trans. Power Syst.*, vol. 21, no. 3, pp. 1242–1249, 2006.
- 9. R. Preece, J. V. Milanovic, A. M. Almutairi, and O. Marjanovic, "Damping of inter-area oscillations in mixed AC/DC networks using WAMS based supplementary controller," *IEEE Trans. Power Syst.*, vol. 28, no. 2, pp. 1160–1169, 2013.
- 10. B. J. Pierre, F. Wilches-Bernal, D. A. Schoenwald, R. T. Elliott, D. J. Trudnowski, R. H. Byrne, and J. Neely, "Design of the Pacific DC Intertie wide area damping controller," *IEEE Trans. Power Syst.*, 2019.
- 11. X. Sui, Y. Tang, H. He, and J. Wen, "Energy-storage-based low-frequency oscillation damping control using particle swarm optimization and heuristic dynamic programming," *IEEE Trans. Power Syst.*, vol. 29, no. 5, pp. 2539–2548, 2014.
- P. Pourbeik and M. J. Gibbard, "Simultaneous coordination of power system stabilizers and FACTS device stabilizers in a multimachine power system for enhancing dynamic performance," *IEEE Trans. Power Syst.*, vol. 13, no. 2, pp. 473–479, 1998.
- 13. T. Nguyen and R. Gianto, "Optimisation-based control coordination of PSSs and FACTS devices for optimal oscillations damping in multi-machine power system," *IET Gener., Transmiss. & Distrib.,* vol. 1, no. 4, pp. 564–573, 2007.
- 14. Y. Li, C. Rehtanz, S. Ruberg, L. Luo, and Y. Cao, "Wide-area robust coordination approach of HVDC and FACTS controllers for damping multiple interarea oscillations," *IEEE Trans. Power Del.*, vol. 27, no. 3, pp. 1096–1105, 2012.

References

- 15. S. Zhang and V. Vittal, "Design of wide-area power system damping controllers resilient to communication failures," *IEEE Trans. Power Syst.*, vol. 28, no. 4, pp. 4292–4300, 2013.
- 16. T. Wang, A. Pal, J. S. Thorp, and Y. Yang, "Use of polytopic convexity in developing an adaptive interarea oscillation damping scheme," *IEEE Trans. Power Syst.*, vol. 32, no. 4, pp. 2509–2520, 2017.
- 17. Y. Zhang and A. Bose, "Design of wide-area damping controllers for interarea oscillations," *IEEE Trans. Power Syst.*, vol. 23, no. 3, pp. 1136–1143, 2008.
- 18. G. Sánchez-Ayala, V. Centeno, and J. Thorp, "Gain scheduling with classification trees for robust centralized control of PSSs," *IEEE Trans. Power Syst.*, vol. 31, no. 3, pp. 1933–1942, 2015.
- P. Agnihotri, A. Kulkarni, A. M. Gole, B. A. Archer, and T. Weekes, "A robust wide-area measurement-based damping controller for networks with embedded multiterminal and multiinfeed HVDC links," *IEEE Trans. Power Syst.*, vol. 32, no. 5, pp. 3884–3892, 2017.
- 20. P. Gupta, A. Pal, C. Mishra, and T. Wang, "Design of a coordinated wide area damping controller by employing partial state feedback," in *Power & Energy Soc. General Meeting (Atlanta), 2019 IEEE PES*, pp. 1–5, IEEE, 2019.
- 21. T. Wang, A. Pal, J. S. Thorp, Z. Wang, J. Liu, and Y. Yang, "Multi-polytope based adaptive robust damping control in power systems using CART," *IEEE Trans. Power Syst.*, vol. 30, no. 4, pp. 2063-2072, Jul. 2015.

Thank You ! **Questions??**

Anamitra Pal: anamitral.pal@asu.edu