Reliability Evaluation of Renewable Generation Integrated Power Grid Including Adequacy and Dynamic Security Assessment

Vijay Vittal, ASU Chanan Singh, TAMU Mojdeh Khorsand, ASU Graduate Student – Yingying Wang

PSERC Webinar Jan 28, 2020

PSERC Project S75

- This webinar details the work done at ASU as a part of PSERC project S75
- This project was done in collaboration with Profs. Chanan Singh and Mojdeh Khorsand
- The student at ASU was Ms. Yinying Wang

Background

Background

Can the present approaches meet the need in the transforming power systems

Objectives

- Develop a probabilistic reliability evaluation approach for the composite system
- Integrate adequacy assessment and dynamic security assessment into a single framework based on probabilistic analysis methodology
- Represent stochastic characteristics and dynamic behavior of renewable energy resources in the integrated evaluation
- Provide methods to improve computational efficiency

Probabilistic analysis methods

- Analytical methods
 - Such as the state enumeration method
 - Suitable for systems with small failure rate
 - Also suitable for systems that have simple operating conditions
- Monte Carlo simulation
 - Non-sequential (random sampling)
 - Time sequential

Methods of probabilistic analysis

- Sequential Monte Carlo simulation
 - Based on sampling a probability distribution of component state durations
 - The distribution assumed for up and down times are exponential
 - The distribution parameter is the failure/ repair rate

Reliability models

- Conventional generator
 - A two-state Markov model
 - Maximum capacity available in the up-state
- Transmission line
 - Take into consideration line length

Reliability models

- Wind turbine generator
 - A two-state Markov model
 - Chronological wind speed curve with 1-hour resolution
 - Wind power output based on wind speed and the power curve

Example of stochastic wind power output using SMCS

Reliability models

- Yearly load curve the correlation between wind power generation and load is represented
- Chronological system states consist of
 - Up/down state of each component
 - Hourly wind power generation
 - Hourly load data
 - Hourly conventional generation

Dynamic models

- Synchronous generator
 - Detailed E''generator model GENROU
 - Governor model GGOV1, TGOV1, HYGOV
 - Excitation system model EXST1
- Type 3 Wind turbine generator
 - Generator/ converter model GEWTG (fault ride through function)
 - Electrical control model EXWTGE (reactive power control)
 - Turbine and turbine control model WNDTGE (APC, WindINERTIA)

Dynamic models

- Constant impedance **load model**
- Protection systems to quantify the severity of dynamic insecurity by measuring the amount of load shedding or the amount of generation tripping after a contingency
 - Under-frequency load shedding LSDT1 in PSLF
 - Under-voltage load shedding LSDT9 in PSLF
 - Over/ under-frequency generator tripping GP1 in PSLF
 - Over/ under voltage generator tripping GP1 in PSLF

Approach

Adequacy Assessment

- AC power flow analysis with remedial actions considered to correct the abnormal system conditions
- PSSE OPF package is used

Dynamic Security Assessment

- Time domain simulation tool is used as the assessment method
- Measured by the amount of **load shed** to maintain stability
- The work in S-75 leverages the earlier PSERC project S-55 work on representation of important protection schemes in the transient stability analysis
- Results are brought in reliability indices calculation

Approach

Integrated Evaluation

Procedure

- Selecting system states
- Analyzing the system state to judge if it is a failure state
- Calculating reliability indices
- Updating convergence index

procedure

Two acceleration methods:

- Cross-entropy based Importance sampling method (CE IS)
 - to speed up SMCS

- A pruning process for TDS
 - to reduce the volume of cases analysed using TDS

CE IS

 Importance sampling: certain variables have a greater impact

 The CE method is a Monte Carlo method for importance sampling to obtain the optimal q(x)

CE IS

Objective: find optimal fault

rate that can facilitate sample

more unreliable cases (rare

events)

 Criteria of minimizing CE is a certain percentage of sampled

cases belongs to rare events

Pruning process for TDS

- TDS introduces significant computational burden
- A two-stage pruning process is used to reduce simulation burden
 - Conduct an early terminated TDS (5 cycles after the fault occurred)
 - Classify system state to be critical or non-critical based on
 - The corrected kinetic energy (*KE*) gained by the machines due to the fault and
 - The maximum change of *Z*th seen at POI of a generator.

- The corrected kinetic energy (KE)
 - Obtain the relative angle and angular speed of generators at the end of the early terminated TDS
 - Calculate the corrected kinetic energy gained by the system, the calculation equation is given as follows:

$$\omega_{coi} = \frac{\sum_{allgens} M_i \,\omega_i}{\sum_{allgens} M_i} \quad (1) \quad M_{cr} = \sum_{critical gens} M_{icr} \quad (2) \quad M_{non_cr} = \sum_{noncritical gens} M_{i_{non_cr}} \quad (3)$$

$$\widetilde{\omega}_{cr} = \frac{\sum_{critical gens} M_{icr}(\omega_{icr} - \omega_{coi})}{M_{cr}} \quad (4) \quad \widetilde{\omega}_{non_cr} = \frac{\sum_{noncritical gens} M_{i_{non_cr}}(\omega_{i_{non_cr}} - \omega_{coi})}{M_{non_cr}} \quad (5)$$

$$M_{eq} = M_{cr} * M_{non_cr} / (M_{cr} + M_{non_cr}) \quad (6) \qquad \widetilde{\omega}_{eq} = \widetilde{\omega}_{cr} - \widetilde{\omega}_{non_cr} \quad (7) \qquad KE_{corr} = \frac{1}{2} M_{eq} (\widetilde{\omega}_{eq})^2 \quad (8)$$

- The max change of Z_{th} ΔZ_{thmax}
 - The max change in the magnitude of Z_{th} is used as an indicator of

a critical or non-critical state

Since a large change in Z_{th} results in a substantial reduction in the • a (pre fault) peak of post-fault swing curve A_{margin} $2H\frac{d^2\delta}{dt^2} = P_m - \frac{EV}{X}\sin\delta$ c (post fault b (During fa δ_1 pi $\delta_3 \delta_{crit}$ δ_2

Integrated Evaluation Procedure with Acceleration Methods Implemented

Study cases

Test System

• A synthetic power system

- 11 synchronous generators with 17,000
 MW total capacity
- 10 wind plants with 1,680 MW total capacity
- 20 transmission lines
- Simulation in GE PSLF
- Reliability data
 - Transmissions fault data: 'forced outage performance of transmission equipment report'-CEA
 - Generator fault data and load curve from IEEE RTS system

Simulation 1 System adequacy evaluation results

- Traditional SMCS addressing only composite system adequacy
 - The system peak load is 7612 MW + j2108 MVAr.
- The simulation converges after 746 iterations. Reliability indices results are:
 - LOLP: 0.0015
 - EPNS: 0.0087 MW
 - LOLF: 2.7663 occ./ year.

Iterations	COV criteria	LOLP	EPNS (MW)	LOLF (occ./y)
746	5%	0.0015	0.0087	2.7663

Simulation 2 Impact of accelerating techniques

□ Reliability indices comparison: traditional SMCS and CE-IS SMCS (9.21 times speed-up!)

□ Both with CE-IS

Convergence: 20 vs. 81 iterations

LOLP: 0.0939 vs. 0.0014

EPNS: 72.8 MW vs. 0.0079 MW

0.11

0.1

0.09

20

40

LOLP

Integrated evaluation, Is threshold = 20 MW

60

80

100

□ Statistical summary

Among 11992 system states

- 408 cases are steady-state unreliable
- 4603 cases are steady-state reliable yet dynamically insecure
 - 8 cases are N-1 contingencies
 - 4595 cases are N-k contingencies with k>1.
- Reliability study will give optimistic results if the DSA is not considered.

Pre-contingency condition

- > All generators and transmissions are online
- ➤ 6375 MW load and 6581 MW generation

No.	Outage component	Rating (MVA)	Pre-fault condition	Fault at time
1	Gen6 on bus 24	4500	1849.3 MW generation	1 s
2	Gen8 on bus 26	1200	405.9 MW generation	1 s
3	Wind farm on bus 808	33.4	9.80 MW generation	1 s
4	Wind farm on bus 3404	23.4	6.90 MW generation	1 s
5	Wind farm on bus 3405	23.4	6.90 MW generation	1 s
6	Line from bus 13 to bus 18	1500	488.6 MW flow	1 s

Contingency setting

Simulation 3: integrated reliability evaluation effect

For this case:

Adequacy assessment result: 0.185 MW load curtailment

DSA result: 1554.4 MW load shed

UNDER PREQUENCY LOAD SHEDDING PROTECTION ACTION				
Time (s)	Switching Action	Details		
2.4835	Stage 1 tripped	Load at bus 15		
2.4960	Stage 1 tripped	Load at bus 12		
2.5044	Stage 1 tripped	Load at bus 25		
2.5127	Stage 1 tripped	Load at bus 23		
2.5169	Stage 1 tripped	Load at bus 19		
2.5169	Stage 1 tripped	Load at bus 21		
4.2629	Stage 2 tripped	Load at bus 15		
4.2875	Stage 2 tripped	Load at bus 12		
4.3004	Stage 2 tripped	Load at bus 23		
4.3045	Stage 2 tripped	Load at bus 19		
4.3045	Stage 2 tripped	Load at bus 21		
Total Loa	ad shedding:	1554.4 MW		

UNDER FREQUENCY LOAD SHEDDING PROTECTION ACTION

□ Case study:

Adequacy assessment result: 0.185 MW load curtailment

➢ DSA result: 1554.4 MW load shed

Simulation 4: Sensitivity study for the load shed threshold in TDS

Is threshold = 20 MW

□ Sensitivity study for load shed threshold in TDS

□ Very similar results from simulations with LS threshold as 20 MW, 100 MW, and 200 MW

Simulation 5: TDS pruning process effects

➤ With pruning: 3842 states out of 11992 states have been

pruned out of full TDS (32% cases)

LS _{TDS} criteria (MW)	Without Pruning Process	With Pruning Process	Deviation (%)
20	0.0939	0.0916	2.4494
100	0.0939	0.0916	2.4494
200	0.0936	0.0913	2.4573
400	0.0753	0.0721	4.2497
500	0.0564	0.0536	4.9645
600	0.0388	0.0375	3.3505
700	0.0269	0.0259	3.3457
800	0.0264	0.0257	2.2727
	3.1924		

Simulation 6: Frequency support assessment

- Installation capacity: 17050 MW + 1680 MW = 18730 MW, 14463 MW load
- outage: 1345.8 MW generation trip

22% wind penetration (1447 MW vs. no load shedding)

Conclusions

- Results showed the importance of considering dynamic security in reliability evaluation
- Stochastic and time variant characteristics can easily be considered in the evaluation using SMCS
- The proposed approach can quantify the integrated reliability
- The two acceleration methods are effective in speeding up the evaluation process
- A paper has been submitted and revised for resubmission, based on the results.
- Another paper focusing on using the integrated reliability evaluation approach to include the assessment of frequency and voltage support is being prepared.

Future work

- Include voltage support capability evaluation into the work
- The second paper
- Final project report

Questions?

Chanan Singh, TAMU Vijay Vittal, ASU Mojdeh Khorsand, ASU

<u>Chanan Singh</u>: singh@ece.tamu.edu <u>Vijay Vittal</u>: vijay.vittal@asu.edu <u>Mojdeh Khorsand</u>: mojdeh.khorsand@asu.edu