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http://teeic.anl.gov/er/transmission/restech/dist/index.cfm

New computational tools are needed to economically and reliably
operate electric grids with significant renewable generation.

U.S. Energy Information Administration, Annual Energy Outlook 2019.

US Annual Electricity Generating Capacity Additions and Retirements

Variability and Uncertainty

A Typical Day of Solar PV Generation,  [Apt and Curtright ‘08]

Motivation
The Legacy Grid
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• Model the relationship between the voltages and the 
power injections.

• Central to many power system optimization and 
control problems.

‒ Optimal power flow, unit commitment, voltage stability, 
contingency analysis, transmission switching, etc.

The Power Flow Equations

Voltages:AC power flow equations
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Optimal Power Flow
Generation Cost

Engineering 
Constraints

Power Flow
Equations
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• Five-bus example problem
[Bukhsh, Grothey, McKinnon, & Trodden ‘13]

Global 
Solution

Local
Solution

A Disconnected Feasible Space

[Molzahn ’17]
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Another Disconnected Space
• Nine-bus example problem

[Bukhsh, Grothey, McKinnon, & Trodden ‘13]

Global 
Solution

Local
Solutions

Lower limits on voltage 
magnitudes and reactive 

power generation

[Molzahn ’17]
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• Linearization of the power flow equations:

• Advantages: 

‒ Fast and reliable solution using linear programming.

• Disadvantages: 

‒ No consideration of voltage magnitudes or reactive power.

‒ Approximation error.

DC Power Flow Approximation
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Current Practice

Sidney Harris,
Science Cartoons Plus

Analysis using the 
DC power flow
approximation

Engineering 
intuition and 

heuristics

Feasible operating point 
for the AC power flow

equations
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• Local optimization

• Approximation

• Convex relaxation

• Convex restriction

Methods for Handling Nonlinearities

Recent successes in Dept. of Energy 
ARPA-E Grid Optimization Competition
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• Seek a “local solution” that is superior to all nearby 
points but possibly inferior to more distant points.

• Dependent on the initialization.

• Two main classes of tools:

‒ Interior point methods (e.g., Ipopt).

‒ Sequential quadratic programming methods (e.g., SNOPT).

Local Optimization

Improving cost function

Global solutionLocal solution
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• Security-Constrained AC Optimal Power Flow problem
‒ Jointly optimize the generators’ real power outputs and voltage 

magnitude setpoints.

‒ N-1 preventative security requirements.

Dept. of Energy ARPA-E Grid 
Optimization Competition
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• Security-Constrained AC Optimal Power Flow problem

Dept. of Energy ARPA-E Grid 
Optimization Competition

Base Case

Contingency 1 Contingency 2 Contingency k

…

…
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•

Dept. of Energy ARPA-E Grid 
Optimization Competition

Base Case

Contingency 1 Contingency 2 Contingency k

…

…

Reactive Power Limits Real Power Limits
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•
‒

‒

• Key challenges:
‒ Problem size: up to 30,000 buses and 10,800 contingencies.

‒ Nonlinearity from the AC power flow equations.

‒ Complementarity conditions from generator limits.

Dept. of Energy ARPA-E Grid 
Optimization Competition
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Our Local Optimization Approach
Preprocessing
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Our Local Optimization Approach
Preprocessing

Base case solution: Ipopt

Contingency Selection
• Evaluate in initial ranked order
• Select contingencies with largest penalties

Master Problem Solve
• Base case + selected contingencies 
• Solve using Ipopt

Contingency Selection

Initial Contingency Ranking

Contingency 
Evaluation

Contingency 
Evaluation

Contingency 
Evaluation

Local Solver
(Ipopt: Interior 
Point Method)
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Final Results

• Top teams reliably output solutions for large-scale 
systems with low generation cost and small 
constraint violation penalties.
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Final Results

Local Solver
(Ipopt used by at 
least four of the 
top five teams)
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Final Results

•

Takeaway: State-of-the-art nonlinear solvers are capable of 
jointly optimizing real power and voltage magnitude setpoints 

in security-constrained AC optimal power flow problems!
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•

• Approximation

•

•

Methods for Handling Nonlinearities
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Power Flow Approximations

• Approximate nonlinearities using assumptions regarding 
typical system characteristics.

• DC power flow for transmission systems.



33 / 112

Power Flow Approximations

• Approximate nonlinearities using assumptions regarding 
typical system characteristics.

• DC power flow for transmission systems.

[Baran & Wu ‘89]• Linearized DistFlow for distribution systems.



34 / 112

Power Flow Approximations

• Approximate nonlinearities using assumptions regarding 
typical system characteristics.

• DC power flow for transmission systems.

[Baran & Wu ‘89]• Linearized DistFlow for distribution systems.

• Many recently proposed alternatives!

https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
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Optimal Adaptive Approximations
• Compute linear approximations that minimize the worst-

case error for a specific system and operating range

Operational Range
[Misra, Molzahn, & Dvijotham PSCC‘18],

[Mühlpfordt, Molzahn, Hagenmeyer, & Misra PowerTech’19] 
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•

•

• Convex relaxation

•

Methods for Handling Nonlinearities
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Power Flow Relaxations

• Relax nonlinearities using less stringent conditions in 
order to enclose the non-convex feasible space within a 
larger convex space.
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Power Flow Relaxations

• Relax nonlinearities using less stringent conditions in 
order to enclose the non-convex feasible space within a 
larger convex space.

Improving cost function

The solution to the relaxation matches 
the solution to the non-convex problem 

 Zero Relaxation Gap
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Power Flow Relaxations

• Relax nonlinearities using less stringent conditions in 
order to enclose the non-convex feasible space within a 
larger convex space.

Improving cost function

The solution to the relaxation does not match 
the solution to the non-convex problem 

 Non-zero Relaxation Gap
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Power Flow Relaxations

• Relax nonlinearities using less stringent conditions in 
order to enclose the non-convex feasible space within a 
larger convex space.

• Three main advantages over local solution algorithms: 

1. Bounds the optimal objective value.

2.

3.

Improving cost function

https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
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Power Flow Relaxations

• Relax nonlinearities using less stringent conditions in 
order to enclose the non-convex feasible space within a 
larger convex space.

• Three main advantages over local solution algorithms: 

1. Bounds the optimal objective value.

2. Provides a sufficient condition for 
infeasibility.

3. Solutions which satisfy an easily 
checkable conditions are 
guaranteed to be globally optimal.

Improving cost function

D.K. Molzahn and I.A. Hiskens, “A Survey of Relaxations and Approximations of the Power Flow 
Equations,” Foundations and Trends in Electric Energy Systems, vol. 4, no. 1-2, pp. 1-221, Feb. 2019.

https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
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• Based on the polar form of the power flow equations:

[Coffrin, Hijazi & Van Hentenryck ‘15]

Example: The QC Relaxation

Trilinear monomials in variables representing        ,        , 
and convex envelopes for                           or                        :  
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• Constructs convex envelopes around the sine and cosine 
functions in the power flow equations with polar voltages.
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Example: The QC Relaxation



54 / 112

• Constructs convex envelopes around the sine and cosine 
functions in the power flow equations with polar voltages.

-60 -40 -20 0 20 40

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-60 -40 -20 0 20 40 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

[Coffrin, Hijazi & Van Hentenryck ‘15]

Example: The QC Relaxation
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• Combining non-dominated relaxations

•

•

Methods for Tightening Relaxations

P1

P2

Non-convex space
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• Combining non-dominated relaxations

•

•

Methods for Tightening Relaxations

P1

P2

Non-convex space

Relaxation 

Non-dominated 
relaxation
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•

• Valid inequalities

•

Methods for Tightening Relaxations

P1

P2

Non-convex space

Relaxation 

Valid Inequality
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•

•

• Branch-and-bound algorithms

Methods for Tightening Relaxations

P1

P2

Non-convex space

Split feasible space
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•

•

• Branch-and-bound algorithms

Methods for Tightening Relaxations

P1

P2

Non-convex space

Split feasible space

Create two 
relaxations
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Applications of 
Convex Relaxations

(Five Examples)
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1. Global Solution via Spatial 
Branch-and-Bound

1. Segment the feasible space into adjoining subregions.

2. In each subregion, compute an upper bound using a local 
solver and a lower bound using a relaxation.

3. Eliminate subregions whose lower bounds are greater than an 
upper bound obtained in any other subregion.

4. Iterate until finding an upper bound that is sufficiently close to 
the least lower bound.
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• Compute upper bounds on the maximum achievable 
loading.

2. Certify Power Flow Insolvability

Power Demand

Voltage
Magnitude

Are the power flow equations feasible for a 
specified loading scenario?

[Molzahn, Lesieutre, & DeMarco ’13]
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• Compute upper bounds on the maximum achievable 
loading.

2. Certify Power Flow Insolvability

Power Demand

Voltage
Magnitude

Upper bound from 
a relaxation

[Molzahn, Lesieutre, & DeMarco ’13]
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• Avoid constraint violations by enforcing a security 
margin, interpreted as tightened constraints.

3. Robust Optimal Power Flow

Current flow 
magnitude

Scheduled flow 
from OPF solution

[Molzahn & Roald ’18]
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• Avoid constraint violations by enforcing a security 
margin, interpreted as tightened constraints.

3. Robust Optimal Power Flow

Current flow 
magnitude

Scheduled flow 
from OPF solution

Realized flow

Constraint
Tightening,

Define appropriate constraint 
tightenings using convex relaxations.

[Molzahn & Roald ’18]
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Robust OPF Example
• 6-bus system “case6ww”

‒ ±5% uncertainty in each load demand
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• For specified ranges of variable power injections, use 
convex relaxations to certify that limited measurements 
and control are sufficient to preclude constraint violations.

• Certify security if upper bounds on worst-case violations 
are within desired operational limits.

4. Certify Distribution Grid Security

[Molzahn & Roald ’19]

Insufficient measurement and 
control to certify security

Voltage control at bus 11 is 
sufficient to certify security

Stay Tuned!   PSERC Project T-64: Who Controls the DERs?
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1. Use convex relaxations to construct an enclosing polytope.

2.

3.

4.

P1

P2

[Molzahn ’17],
[Venzke, Molzahn, & 
Chatzivasileiadis ’19]

5. Create Machine Learning Datasets
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•

•

•

• Convex restriction

Methods for Handling Nonlinearities
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• Compute convex regions that are completely 
contained within the non-convex feasible space. 

•

•

Convex Restrictions

[Cui & Sun ’19], [Lee, Nguyen, Dvijotham, Turitsyn ’19]
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• Goal: Compute a path between operating points that 
is guaranteed to avoid constraint violations. 

Application 1: Feasible Path

[Lee, Turitsyn, Molzahn, & Roald ’20]Figures courtesy of Dongchan Lee
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Initial 
operating 

point

Desired 
operating 

point

Figures courtesy of Dongchan Lee
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Conclusion

D.K. Molzahn and I.A. Hiskens, “A Survey of Relaxations and Approximations of the Power Flow 
Equations,” Foundations and Trends in Electric Energy Systems, vol. 4, no. 1-2, pp. 1-221, Feb. 2019.

• Four approaches for handling power system nonlinearities: 

• Capabilities of each are useful for different applications.

Local Optimization Approximation

Convex Relaxation Convex Restriction

https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
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Questions?

D.K. Molzahn and I.A. Hiskens, “A Survey of Relaxations and Approximations of the Power Flow 
Equations,” Foundations and Trends in Electric Energy Systems, vol. 4, no. 1-2, pp. 1-221, Feb. 2019.

Local Optimization Approximation

Convex Relaxation Convex Restriction

Dan Molzahn
molzahn@gatech.edu

https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
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