A Review of Recent Developments
in Nonlinear Optimization of
Electric Power Systems

Daniel Molzahn
Georgia Institute of Technology
(molzahn@gatech.edu)

PSERC Webinar
PSERC March 10, 2015



Motivation
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Variability and Uncertainty
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A Typical Day of Solar PV Generation, [Apt and Curtright ‘08]

New computational tools are needed to economically and reliably
operate electric grids with significant renewable generation.
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The Power Flow Equations

* Model the relationship between the voltages and the

power injections.

AC power flow equations

Voltages: V; = |V;|Z£6;

P =1V ZH Gy cos (0 — 0i) + Bipsin (0, — 0))

Q; = Z Vi| (Girsin (6; — 6;.) — Byrcos (6, — 6.))

* Central to many power system optimization and

control problems.

— Optimal power flow, unit commitment, voltage stability,

contingency analysis, transmission switching, etc.
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Optimal Power Flow
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A Disconnected Feasible Space

* Five-bus example problem
[Bukhsh, Grothey, McKinnon, & Trodden ‘13]
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Another Disconnected Space

* Nine-bus example problem

[Bukhsh, Grothey, McKinnon, & Trodden ‘13]
Lower limits on voltage
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DC Power Flow Approximation

* Linearization of the power flow equations:

P = H |Z |1i | ACDB H — 0 ) + B sin {:ﬁ, — H;,.))

Qi =1V |Z Vi (Gisin (6; — 0) — By cos (6, — 0,.))

* Advantages:

— Fast and reliable solution using linear programming.

* Disadvantages:

— No consideration of voltage magnitudes or reactive power.

— Approximation error.
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DC Power Flow Approximation

* Linearization of the power flow equations:

-_|I|Z|I;| G cos (6, — 6;) + B sin (0, — 0;))

—

— |V, Z Vi| (G s Sip (Lommebber=TT:7. cOs (0; — 61.))

* Advantages:

— Fast and reliable solution using linear programming.

* Disadvantages:

— No consideration of voltage magnitudes or reactive power.

— Approximation error.
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DC Power Flow Approximation

* Linearization of the power flow equations:

P, :f Zf (Gipcos (0, — ;) + Bipsin (6, — 6;.))

Qi = Vil Y V| (G SinlBemmettrr="T7- cOS (6 — )

* Advantages:

— Fast and reliable solution using linear programming.

* Disadvantages:

— No consideration of voltage magnitudes or reactive power.

— Approximation error.
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DC Power Flow Approximation

* Linearization of the power flow equations:

L, 1 0

P, :f Zf {f..;..-:'wrﬂ' (0, — ;) + B sin (0, — 0.))

—

Qi = Vil Y V| (G SinlBemmettrr="T7- cOS (6 — )

* Advantages:

— Fast and reliable solution using linear programming.
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— No consideration of voltage magnitudes or reactive power.

— Approximation error.
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DC Power Flow Approximation

* Linearization of the power flow equations:
(9.! — Qk)

P, f Z}f }t cos (6; ﬂ,.i..::+B,—A..~}t(9£—aﬂ.))

—

Q, = |V, Z Vie| (G s SipLemmettrr=TT.7. cOs (0; — 0))

|

* Advantages:

— Fast and reliable solution using linear programming.

* Disadvantages:

— No consideration of voltage magnitudes or reactive power.

— Approximation error.
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DC Power Flow Approximation

* Linearization of the power flow equations:
(6; — 6)

P Z cos (0; — 0;) + B sifl (0; — 61))
PSP o001 Oy oo

()i = Vi Z Vil (G ;u_l_'” s B cos (6; — 0))

|

* Advantages:

— Fast and reliable solution using linear programming.

* Disadvantages:

— No consideration of voltage magnitudes or reactive power.

— Approximation error.
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Current Practice

Analysis using the
DC power flow
approximation

Engineering

intuition and
heuristics

Feasible operating point
for the AC power flow
equations
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Sidney Harris,
Science Cartoons Plus

“| think you should be more
explicit here in step two.”
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Methods for Handling Nonlinearities

* Local optimization

Recent successes in Dept. of Energy
ARPA-E Grid Optimization Competition

* Approximation @
* Convex relaxation @

e Convex restriction
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Local Optimization

* Seek a “local solution” that is superior to all nearby
points but possibly inferior to more distant points.

* Dependent on the initialization.

Improving cost function

AN

Local solution Global solution

e Two main classes of tools:

— Interior point methods (e.g., lpopt).

— Sequential quadratic programming methods (e.g., SNOPT).
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Dept. of Energy ARPA-E Grid
Optimization Competition

* Security-Constrained AC Optimal Power Flow problem

— Jointly optimize the generators’ real power outputs and voltage
magnitude setpoints.

— N-1 preventative security requirements.
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Dept. of Energy ARPA-E Grid

Optimization Competition

* Security-Constrained AC Optimal Power Flow problem

minimize Piecewise Linear Generation Cost

subject to

4 Base Case
Voltage Magnitude Limits

Line Flow Limits

Real and Reactive Generation Limits

@C Power Flow Equations

~

4 Contingency 1 )
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Line Flow Limits
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@C Power Flow Equations Y

4 Contingency 2 )
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Line Flow Limits

Real and Reactive Generation Limits

@C Power Flow Equations Y

4 Contingency k )
Voltage Magnitude Limits

Line Flow Limits

Real and Reactive Generation Limits
@C Power Flow Equations Y

17/112



Dept. of Energy ARPA-E Grid

Optimization Competition

minimize Piecewise Linear Generation Cost

subject to

Reactive Power Limits
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Dept. of Energy ARPA-E Grid
Optimization Competition

* Key challenges:
— Problem size: up to 30,000 buses and 10,800 contingencies.
— Nonlinearity from the AC power flow equations.

— Complementarity conditions from generator limits.
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Our Local Optimization Approach

Preprocessing
Y

[ Base case solution: Ipopt 1

<
O

J
L Master Problem Solve }

» Base case + selected contingencies
* Solve using Ipopt
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a— s — . —

20/ 112



Our Local Optimization Approach

Preprocessing

Master Provblem Solve

» Base case + selected contingencies
* Solve using Ipopt
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Our Local Optimization Approach

Preprocessing

Initial Contingency Ranking

J
{ Master Problem Solve

» Base case + selected contingencies
* Solve using Ipopt

v 1

—
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Our Local Optimization Approach

Preprocessing

Initial Contingency Ranking

Contingency Selection

 Evaluate in initial ranked order
» Select contingencies with largest penalties

V
Master Problem Solve

» Base case + selected contingencies
* Solve using Ipopt )

~ 1t

)
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Our Local Optimization Approach

Preprocessing

Initial Contingency Ranking

 Evaluate in initial ranked order
« Select contingencies with largest penalties

{ Contingency Selection J
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Our Local Optimization Approach

Preprocessing

Initial Contingency Ranking

 Evaluate in initial ranked order
« Select contingencies with largest penalties

{ Contingency Selection J

Contingency Selection

[ Contingency ][ Contingency ]...[ Contingency ]
Evaluation Evaluation Evaluation
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Our Local Optimization Approach

Preprocessing

Initial Contingency Ranking

 Evaluate in initial ranked order
« Select contingencies with largest penalties

{ Contingency Selection J

Conting_gﬂ/ Selection
[ Contingency ] [ Contingency ]. .o | Contingency
Evaluation Evaluation Evaluation
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Our Local Optimization Approach

Preprocessing

Local Solver Initial Contingency Ranking

(Ipopt: Interior
Point Method)

 Evaluate in initial ranked order
« Select contingencies with largest penalties

{ Contingency Selection

L Conting_gﬂ/ Selection

[ Contingency ][ Contingency ]... Contingency
Evaluation Evaluation Evaluation
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Final Results

* Top teams reliably output solutions for large-scale
systems with low generation cost and small
constraint violation penalties.
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Final

Local Solver
(Ipopt used by at
least four of the
top five teams)

Results

LEADERBOARD - CHALLENGE 1 - FINAL EVENT

Updated: 2/12/2020

*Top 10 Placement Division 1 Division 2 Division 3 Division 4
Organization: Lawrence Livermore National Laboratory
Team Name: golinlp
Team Lead: Cosmin G. Petra 1 1 ]
Omar DeGuchy,
Members: Ignacio Andres Aravena Solis,
Deepak Rajan
Organization: Lehigh University
Team Name: GO-SNIP
Team Lead: Frank Edward Curtis 4 3 R 2
Daniel Kenneth Molzahn,
Members: Andreas Waechter,
Ermin Wei. Elizabeth Wong
Organization: Georgia Institute of Technology
Team Name: GMI-GO
Z 7 3
Team Lead: ¥u Sun - - &
Santanu § s Dey, Ami mi
Members: .cr‘t nu Subhas Dey, Amin Gholami,
Kaizhao Sun, Shixuan Zhang
Organization: individuals
Team Name: BAT
8 2 [ 5
Team Lead: Andrew George Telyatnik
Members: Oleg Michailovich Strelnikov
Organization: individuals
Team Name: gravityx
6 [ 5 4

Team Lead:

Members:

MNathan Lemons

Hassan Lionel Hijazi
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Final Results

Takeaway: State-of-the-art nonlinear solvers are capable of
jointly optimizing real power and voltage magnitude setpoints
In security-constrained AC optimal power flow problems!
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Methods for Handling Nonlinearities

* Approximation @
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Power Flow Approximations

* Approximate nonlinearities using assumptions regarding
typical system characteristics.

* DC power flow for transmission systems.
1, 1 0 (93 — 911')

P :f Zf V cos (#;, — 6;.) + B %fé’; — Hr)) .
! _ # P = Z B, (6, —6;)
' v (G sind o ) k=1

B, cos (0; — 6;.)
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Power Flow Approximations

* Approximate nonlinearities using assumptions regarding
typical system characteristics.

DC power flow for transmission systems.

* Linearized DistFlow for distribution systems. (saran & wu s

Py = Bt~ Pit D Pin

Vi “-‘ m:k—m

O | @ik = M — Qr + Z Qkm

_ m:k—m
Pk + 7 Qi 1 —P + jQk

|VL|2 = |Vl,|2 — 2 (R P + XirQir) + (R?
. 9 T Y
Rt =07
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Power Flow Approximations

* Approximate nonlinearities using assumptions regarding
typical system characteristics.

* DC power flow for transmission systems.

* Linearized DistFlow for distribution systems. (saran & wu s

* Many recently proposed alternatives!

Foundations and Trends® in Electric Energy
Systems

A Survey of Relaxations and
Approximations of the Power Flow

Equations

Daniel K. Molzahn lan A. Hiskens

Georgia Institute of Technology University of Michigan
molzahn@gatech.edu hiskens@umich.edu
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https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf
https://molzahn.github.io/pubs/molzahn_hiskens-fnt2019.pdf

Optimal Adaptive Approximations

« Compute linear approximations that minimize the worst-
case error for a specific system and operating range

A

e Operational Range ......... »

[Misra, Molzahn, & Dvijotham PSCC‘18],
[MUhlpfordt, Molzahn, Hagenmeyer, & Misra PowerTech’19]
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Optimal Adaptive Approximations

« Compute linear approximations that minimize the worst-
case error for a specific system and operating range
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Optimal Adaptive Approximations

« Compute linear approximations that minimize the worst-
case error for a specific system and operating range

A

/
e Operational Range ......... »

[Misra, Molzahn, & Dvijotham PSCC‘18],
[MUhlpfordt, Molzahn, Hagenmeyer, & Misra PowerTech’19]
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Optimal Adaptive Approximations

« Compute linear approximations that minimize the worst-
case error for a specific system and operating range

A

|
D Operational Range - >
[Misra, Molzahn, & Dvijotham PSCC‘18],
[MUhlpfordt, Molzahn, Hagenmeyer, & Misra PowerTech’19]
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Optimal Adaptive Approximations

« Compute linear approximations that minimize the worst-
case error for a specific system and operating range
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Optimal Adaptive Approximations

« Compute linear approximations that minimize the worst-
case error for a specific system and operating range

A

e Operational Range ......... »

[Misra, Molzahn, & Dvijotham PSCC‘18],
[MUhlpfordt, Molzahn, Hagenmeyer, & Misra PowerTech’19]
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Optimal Adaptive Approximations

« Compute linear approximations that minimize the worst-
case error for a specific system and operating range

A

e Operational Range ......... »

[Misra, Molzahn, & Dvijotham PSCC‘18],
[MUhlpfordt, Molzahn, Hagenmeyer, & Misra PowerTech’19]
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Methods for Handling Nonlinearities

e Convex relaxation @
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Power Flow Relaxations

* Relax nonlinearities using less stringent conditions in
order to enclose the non-convex feasible space within a
larger convex space.
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Power Flow Relaxations

* Relax nonlinearities using less stringent conditions in
order to enclose the non-convex feasible space within a
larger convex space.

Improving cost function

N\

Global solution

Local solution
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Power Flow Relaxations

* Relax nonlinearities using less stringent conditions in
order to enclose the non-convex feasible space within a
larger convex space.

Improving cost function

N\
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Power Flow Relaxations

* Relax nonlinearities using less stringent conditions in
order to enclose the non-convex feasible space within a
larger convex space.

Improving cost function

N\

The solution to the relaxation matches
the solution to the non-convex problem
- Zero Relaxation Gap
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Power Flow Relaxations

* Relax nonlinearities using less stringent conditions in
order to enclose the non-convex feasible space within a
larger convex space.

Improving cost function

\

The solution to the relaxation does not match
the solution to the non-convex problem
- Non-zero Relaxation Gap
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Power Flow Relaxations

* Relax nonlinearities using less stringent conditions in
order to enclose the non-convex feasible space within a
larger convex space.

* Three main advantages over local solution algorithms:

1. Bounds the optimal objective value. . .
Improving cost function

2. \
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Power Flow Relaxations

* Relax nonlinearities using less stringent conditions in
order to enclose the non-convex feasible space within a
larger convex space.

* Three main advantages over local solution algorithms:

1. Bounds the optimal objective value. . .
Improving cost function

2. Provides a sufficient condition for
infeasibility.
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Power Flow Relaxations

* Relax nonlinearities using less stringent conditions in
order to enclose the non-convex feasible space within a

larger convex space.

* Three main advantages over local solution algorithms:

1. Bounds the optimal objective value. . .
Improving cost function

2. Provides a sufficient condition for
infeasibility.

3. Solutions which satisfy an easily
checkable conditions are
guaranteed to be globally optimal.
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Power Flow Relaxations

* Relax nonlinearities using less stringent conditions in
order to enclose the non-convex feasible space within a

larger convex space.

* Three main advantages over local solution algorithms:

1. Bounds the optimal objective value. . .
Improving cost function

2. Provides a sufficient condition for
infeasibility.

3. Solutions which satisfy an easily
checkable conditions are
guaranteed to be globally optimal.

D.K. Molzahn and I.A. Hiskens, “A Survey of Relaxations and Approximations of the Power Flow
Equations,” Foundations and Trends in Electric Energy Systems, vol. 4, no. 1-2, pp. 1-221, Feb. 2019.
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Example: The QC Relaxation

* Based on the polar form of the power flow equations:

Py = g [ViI" — g |Vi| [Vi| cos (8; — 0)) by |Vi| [Vi| sin (8; — 6;)

Qi = — (beir/2 + bi) |Vi|” = g4 |Vi| [Vi| sin (8; — 03) + biy |V;| |Vi| cos (6; — 6;)

Trilinear monomials in variables representing |Vi|, [V},
and convex envelopes for cos (¢, — 0;.) or sin (¢; — 0,.):

Hr| : ‘TH| - cos (0; — 6';,) :'
H*"}| : ‘TM| - sin (6, — "5"&-) :

[Coffrin, Hijazi & Van Hentenryck ‘15]
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Example: The QC Relaxation

* Constructs convex envelopes around the sine and cosine
functions in the power flow equations with polar voltages.

sin (6; — 0;.) cos (0; — 0)

I I
0 40

1
-60 -40

0, — 0y

[Coffrin, Hijazi & Van Hentenryck ‘15]
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Example: The QC Relaxation

* Constructs convex envelopes around the sine and cosine
functions in the power flow equations with polar voltages.

sin (6; — 0;.) cos (0; — 0)

0s | 0.5 (cos (#; — H.,._))Cf
o (sin (8, — H.,,))S o
04 | 0.85
02 | 08
0 075
02 | 07
04 | 065
05 | 06
08 | 055 |
1 ) ) ) ) ) 05 - . . - .
' 5 o ; 2 ) 5 s o 2 5 » 5
0, — 0, 0; — O

[Coffrin, Hijazi & Van Hentenryck ‘15]
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Methods for Tightening Relaxations

« Combining non-dominated relaxations
* Valid inequalities

* Branch-and-bound algorithms

Non-convex space

Py
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Methods for Tightening Relaxations

« Combining non-dominated relaxations

* Valid inequalities

* Branch-and-bound algorithms

Py

Non-convex space

Relaxation
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Methods for Tightening Relaxations

« Combining non-dominated relaxations

* Valid inequalities

* Branch-and-bound algorithms

Py

Non-convex space

Non-dominated
relaxation

Relaxation
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Methods for Tightening Relaxations

 Combining non-dominated relaxations
- Valid inequalities

* Branch-and-bound algorithms

Non-convex space

Py

Relaxation

Valid Inequality

P,

58 /112



Methods for Tightening Relaxations

 Combining non-dominated relaxations
* Valid inequalities

* Branch-and-bound algorithms

Non-convex space

Py

Split feasible space  _
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Methods for Tightening Relaxations

 Combining non-dominated relaxations
* Valid inequalities

* Branch-and-bound algorithms

Non-convex space

Py

Split feasible space

N

Create two
relaxations

60/112



Applications of
Convex Relaxations

(Five Examples)



1. Global Solution via Spatial
Branch-and-Bound

1. Segment the feasible space into adjoining subregions.

2. In each subregion, compute an upper bound using a local
solver and a lower bound using a relaxation.

3. Eliminate subregions whose lower bounds are greater than an
upper bound obtained in any other subregion.

4. lterate until finding an upper bound that is sufficiently close to
the least lower bound.

|I/71|2 A
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1. Global Solution via Spatial
Branch-and-Bound
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2. In each subregion, compute an upper bound using a local
solver and a lower bound using a relaxation.
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the least lower bound.

vy
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2. Certify Power Flow Insolvability

« Compute upper bounds on the maximum achievable

loading.

Voltage
Magnitude

Are the power flow equations feasible for a
specified loading scenario?

Power Demand

[Molzahn, Lesieutre, & DeMarco '13]
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2. Certify Power Flow Insolvability

« Compute upper bounds on the maximum achievable
loading.

T

Voltage
Magnitude

Power Demand

[Molzahn, Lesieutre, & DeMarco '13]
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2. Certify Power Flow Insolvability

« Compute upper bounds on the maximum achievable

loading. Upper bound from

a relaxation

f

Voltage
Magnitude

N

Power Demand

[Molzahn, Lesieutre, & DeMarco '13]
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3. Robust Optimal Power Flow

* Avoid constraint violations by enforcing a security
margin, interpreted as tightened constraints.

Current flow
magnitude

A

Scheduled flow

, from OPF solution
ma,r

[Molzahn & Roald ’18]
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3. Robust Optimal Power Flow

* Avoid constraint violations by enforcing a security

margin, interpreted as tightened constraints.

Current flow
magnitude

Max
Lym

Scheduled flow
from OPF solution

Realized flow

[Molzahn & Roald ’18]
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3. Robust Optimal Power Flow

* Avoid constraint violations by enforcing a security

margin, interpreted as tightened constraints.

Current flow
magnitude

Max
Lym

Scheduled flow
from OPF solution

Realized flow

[Molzahn & Roald ’18]
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3. Robust Optimal Power Flow

* Avoid constraint violations by enforcing a security
margin, interpreted as tightened constraints.

Current flow
magnitude

A

ma,r

maz . //X ~ /\ /\ Scheduled flow
by — ?;m from OPF solution
V \/ \/ \/ \ Realized flow

[Molzahn & Roald ’18]
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3. Robust Optimal Power Flow

* Avoid constraint violations by enforcing a security
margin, interpreted as tightened constraints.

Current flow

magnitude A
Constraint
TNAT i ) .
e R Tightening, A; .

A

\ /\ //X ~ /\ /\ I Scheduled flow
by — Mgy, from OPF solution
V \/ \/ \/ \ Realized flow

[Molzahn & Roald ’18]
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3. Robust Optimal Power Flow

* Avoid constraint violations by enforcing a security
margin, interpreted as tightened constraints.

Current flow

magnitude A
Constraint
TNAT i ) .
e R Tightening, A; .

A

\ /\ //X ~ /\ /\ I Scheduled flow
by — Mgy, from OPF solution
V \/ \/ \/ \ Realized flow

Define appropriate constraint
tightenings using convex relaxations.

[Molzahn & Roald ’18]
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Robust OPF Example

* 6-bus system “casebww”

Feasible Space

0.38 0.4 0.42 0.44 0.46

211] (p.u.)

0.48

0.5

— =*=5% uncertainty in each load demand

062 | 193210 2 |
| $3200
0.60 |00 060
=
C.L $3180
= 058 | 058 |
= $3170
=fi
- =
= o056 | $3160 056 |
$3150
054 | 054 |
$3140

Uncertainty Realizations

20
e

&
\

kK
(I

)
By

Rt

0.3‘8 0.‘4 0.4‘2 0.4‘4 0.4‘6 0.4‘8 0.25
i41] (p-u.)
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Robust OPF Example

* 6-bus system “casebww”
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4. Certify Distribution Grid Security

* For specified ranges of variable power injections, use
convex relaxations to certify that limited measurements
and control are sufficient to preclude constraint violations.

+ Certify secuirity if upper bounds on worst-case violations

are within desired operational limits. V (pu.)
o® o
. o % o S oogo I
%, ® o o° % o & o ° 10.95
Q ® o %o o o)
@ 0 0 ©0 0 ¢ © © © o o 0o 0 ¢ ©
s 8 2 Oo o Bus 11 g ® oo
YT X Ry é Oo 00000 0 @ é. Oo
® ' OO o ' OO 10.90
/ Substation Substation
®e %
: :
® o
¢ ° i0.85
Insufficient measurement and Voltage control at bus 11 is
control to certify security sufficient to certify security

[Molzahn & Roald ’19]
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5. Create Machine Learning Datasets

1. Use convex relaxations to construct an enclosing polytope.

B~ L DN

[Molzahn '17],
> [Venzke, Molzahn, &
Pz Chatzivasileiadis '19]
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5. Create Machine Learning Datasets

1. Use convex relaxations to construct an enclosing polytope.

2. points
3. Calculate the at each sampled point.
4, feasible and infeasible points.

Py

[Molzahn ’17],
[Venzke, Molzahn, &
Chatzivasileiadis '19]
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1. Use convex relaxations to construct an enclosing polytope.
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5. Create Machine Learning Datasets

1. Use convex relaxations to construct an enclosing polytope.
2. Sample points inside the polytope.

3.

4,

[Molzahn ’17],
[Venzke, Molzahn, &
Chatzivasileiadis '19]
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5. Create Machine Learning Datasets

1. Use convex relaxations to construct an enclosing polytope.
2. Sample points inside the polytope.

3. Calculate the power flow solutions at each sampled point.

4.

[Molzahn ’17],
[Venzke, Molzahn, &
Chatzivasileiadis '19]
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5. Create Machine Learning Datasets

1.

W N

Use convex relaxations to construct an enclosing polytope.
Sample points inside the polytope.
Calculate the power flow solutions at each sampled point.

Classify feasible and infeasible points.

Py

[Molzahn ’17],
[Venzke, Molzahn, &
Chatzivasileiadis '19]
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5. Create Machine Learning Datasets

1.

W N

Use convex relaxations to construct an enclosing polytope.
Sample points inside the polytope.

Calculate the power flow solutions at each sampled point.

Classify feasible and infeasible points.

nit)

Qg (per ui

[Molzahn ’17],
[Venzke, Molzahn, &
Chatzivasileiadis '19]
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Methods for Handling Nonlinearities

* Convex restriction 0
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Convex Restrictions

* Compute convex regions that are completely
contained within the non-convex feasible space.

[Cui & Sun ’19], [Lee, Nguyen, Dvijotham, Turitsyn '19]
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Convex Restrictions

* Compute convex regions that are completely
contained within the non-convex feasible space.

* Based on fixed-point theorems.

[Cui & Sun ’19], [Lee, Nguyen, Dvijotham, Turitsyn '19]
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Application 1: Feasible Path

* Goal: Compute a path between operating points that
IS guaranteed to avoid constraint violations.
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Application 1: Feasible Path

* Goal: Compute a path between operating points that
IS guaranteed to avoid constraint violations.
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Application 2: Robust Optimization

* Goal: Compute an operating point that is robust to
variations in the net power injections.
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Application 2: Robust Optimization
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Application 2: Robust Optimization

* Goal: Compute an operating point that is robust to
variations in the net power injections.
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Conclusion

* Four approaches for handling power system nonlinearities:

a

Local Optimization Approximation
Convex Relaxation Convex Restriction

* Capabilities of each are useful for different applications.

D.K. Molzahn and I.A. Hiskens, “A Survey of Relaxations and Approximations of the Power Flow
Equations,” Foundations and Trends in Electric Energy Systems, vol. 4, no. 1-2, pp. 1-221, Feb. 2019.
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Questions?

a

Local Optimization Approximation
Convex Relaxation Convex Restriction

D.K. Molzahn and I.A. Hiskens, “A Survey of Relaxations and Approximations of the Power Flow
Equations,” Foundations and Trends in Electric Energy Systems, vol. 4, no. 1-2, pp. 1-221, Feb. 2019.

Dan Molzahn
molzahn@gatech.edu
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Bound Tightening

« Many of the relaxations require narrow bounds on
voltage angles, voltage magnitudes, etc.

* Relaxations can be used to tighten the bounds:
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voltage angles, voltage magnitudes, etc.
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max |Vi|* subject to
1) Operational constraints

2) A power flow relaxation
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Bound Tightening
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