Tracking and Analyzing the Short-Run Impact of COVID-19 on the U.S. Electricity Sector

Le Xie Texas A&M University

(le.xie@tamu.edu)

PSERC Webinar September 1, 2020

PSERC Webinar Series, Fall 2020

Tracking and Analyzing the Short-Run Impact of COVID-19 on the U.S. Electricity Sector

Le Xie

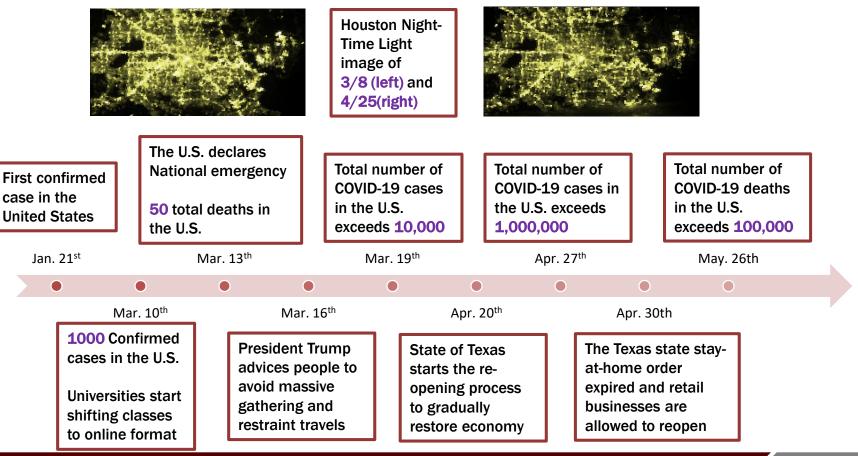
Professor, Electrical and Computer Engineering, Chancellor EDGES Fellow Assistant Director-Energy Digitization, Texas A&M Energy Institute September 1, 2020 le.xie@tamu.edu

Joint work with G. Ruan, D. Wu, X. Zheng, S. Sivaranjani, J. Wu, H. Zhong, C. Kang and M. A. Dahleh

Outline

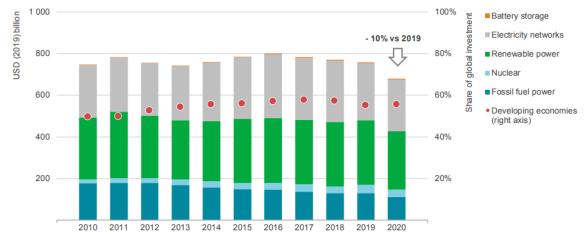
- COVID-19 as a Public Health Crisis: A Brief Timeline
- Short-run Impact on the U.S. Electricity Sector
- Cross-Domain Data-driven Analysis: Some Preliminary Insights
- What's Next? A Predictive Model
- Concluding Remarks

COVID-19 Timeline



Impact of COVID-19 to the Global Energy Sector

- According to the newly published IEA report[1], the global power investment fell to its lowest level in over a decade.
- Those investments are affected by policies, economic depression and mobilities restrictions due to COVID-19.
- The crisis is pushing the retirement of older and obsoleted plants, as the demand is dropping considerably.



International Energy Agency, World Energy Investment, https://www.iea.org/reports/world-energy-investment-2020

IEEE Spectrum News Report

Blogs -

Multimedia •

18 Jun 2020 | 18:17 GMT

How the Pandemic Impacts U.S. **Electricity Usage**

A big data project is analyzing social distancing's impact on U.S. electricity consumption during the pandemic

By Jeremy Hsu

Xie and his colleagues from Texas A&M, MIT, and Tsinghua University in Beijing, China, are publicly sharing their Coronavirus Disease-Electricity Market Data Aggregation (COVID-EMDA) project and the software codes they have used in their analyses in an online Github repository. They first uploaded a preprint paper describing their initial analyses to arXiv on 11 May 2020.

Night-time light in New York City before COVID-19 (Feb 8, 2020)

Night-time light in New York City during COVID-19 (April 25, 2020)

Images: Le Xie/Texas A&M Energy Institute, MIT, and Tsinghua University

Source: <u>https://spectrum.ieee.org/energywise/energy/the-smarter-grid/how-the-pandemic-impacts-us-electricity-usage</u>

Our Research Progress

Data Hub and Analysis Tools:

- Cross-domain Data Hub: COVID-EMDA+.
- Some open-source toolkits and tutorials are provided.
- Available: <u>https://github.com/tamu-engineering-research/COVID-EMDA</u>.

Research Papers:

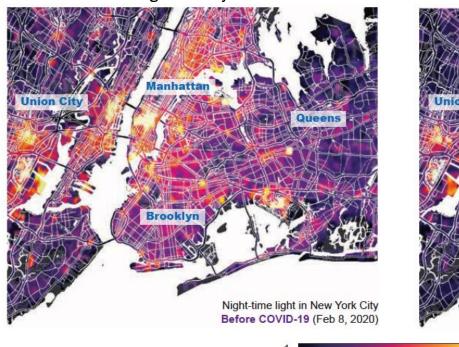
ZMDA

- G. Ruan, D. Wu, X. Zheng, H. Zhong, C. Kang, M. A. Dahleh, S. Sivaranjani, and L. Xie, "A Cross-Domain Approach to Analyzing the Short-Run Impact of COVID-19 on the U.S. Electricity Sector", Joule, 2020 (accepted, available: <u>https://arxiv.org/abs/2005.06631</u> [Online])
- G. Ruan, J. Wu, H. Zhong, Q. Xia, and L. Xie, "Quantitative Assessment of U.S. Bulk Power Systems and Market Operations during the COVID-19 Pandemic", 2020 (in submission to Applied Energy, available: <u>http://www.enerarxiv.org/page/thesis.html?id=2196</u> [Online])

Outline

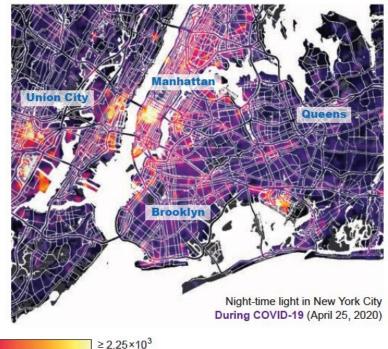
- COVID-19 as a Public Health Crisis: Timeline
- Short-run Impact on the U.S. Electricity Sector
- Cross-Domain Data-driven Analysis: Some Preliminary Insights
- What's Next? A Predictive Model
- Concluding Remarks

COVID-19's Impact from the Satellite View



Average intensity: 257

Average intensity: 154

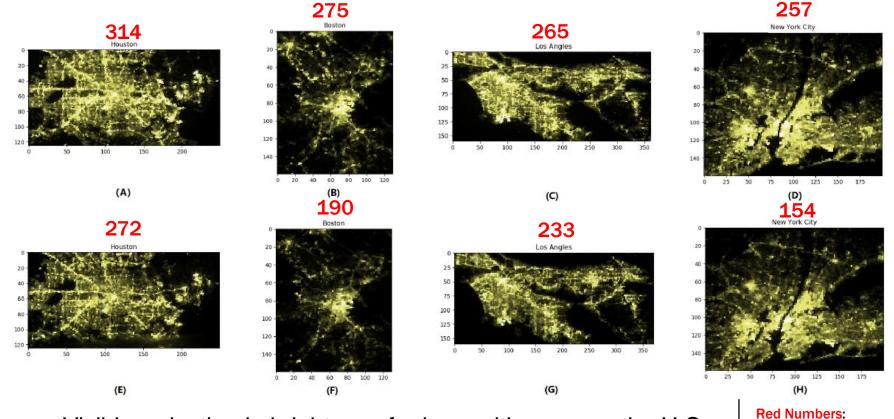


Night-time light intensity (nW·cm⁻²·sr⁻¹)

G. Ruan, D. Wu, X. Zheng, H. Zhong, C. Kang, M. A. Dahleh, S. Sivaranjani, and L. Xie, "A Cross-Domain Approach to Analyzing the Short-Run Impact of COVID-19 on the U.S. Electricity Sector", Joule, 2020 (accepted, available: https://arxiv.org/abs/2005.06631[Online])

S

COVID-19's Impact from the Satellite View

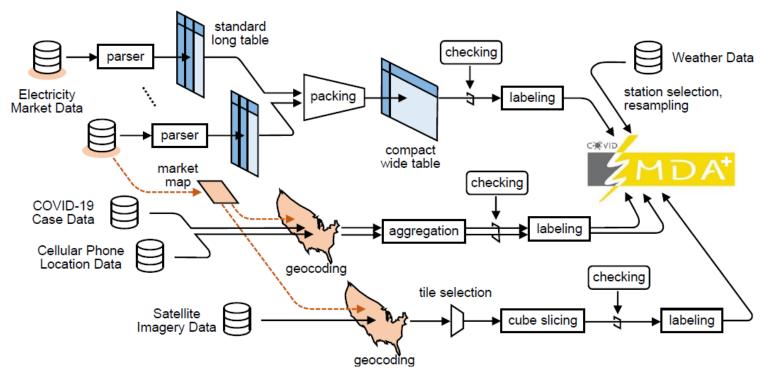


Visible reduction in brightness for large cities across the U.S.

Red Numbers: Average Lighting Intensity

COVID-EMDA⁺ Data Hub

• **Features**: (1) Merge different data sources (2) Daily update and quality control (3) Open access



Open Access: https://github.com/tamu-engineering-research/COVID-EMDA

Data Hub: WE NEED YOUR SUPPORT!

Public Release: <u>https://github.com/tamu-engineering-research/COVID-EMDA</u>

tamu-engineering	-research / COVID-EME	DA 💿 Watch 👻 3	Star 26 Fork 8
↔ Code ① Issues 1	1 Pull requests 🕑 A	ctions 凹 Projects 🕮 Wik	i 🕕 Security 🛛 😶
ို master 👻	Go to file	Add file - Code -	About 鐐
jiahwu95 Delete .DS_S	itore	17 hours ago 🕚 348	A Cross-Domain Data Hub with Electricity Market, Coronavirus Case, Mobility
data_release	8/17 update	17 hours ago	and Satellite Data in U.S.
data_source	Delete .DS_Store	17 hours ago	🛱 Readme
igure figure	update	26 days ago	শ্রু MIT License
parser	create	26 days ago	
startup	update	3 months ago	Releases
supplementary	update	18 hours ago	No releases published
	upload	4 months ago	Create a new release
B README.md	Update README.md	2 days ago	Packages

ĂМ

Support Team

COVID-19 IMPACT

@ 2020 Le Xie, All Rights Reserved.

COVID-EMDA+ Data Hub

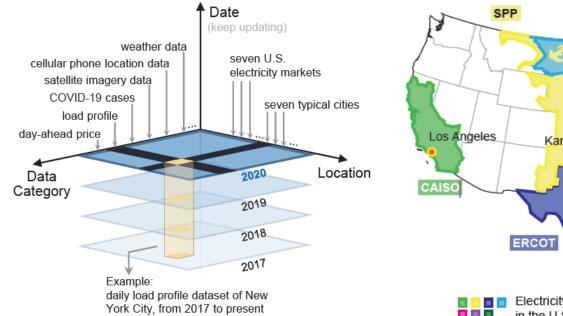




Figure. Architecture of COVID-EMDA+.

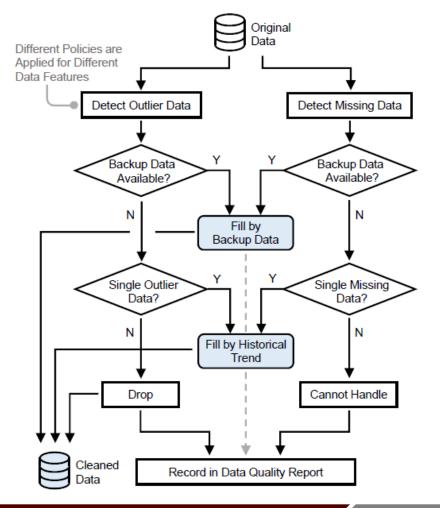
Heterogeneous data from different sources are processed and aggregated to a consistent format along the time dimension. Figure. Map of United States representing the region of operation of market organizations/RTOs. Seven existing electricity markets and seven typical cities are highlighted.

ISO-NE

Data Quality Control

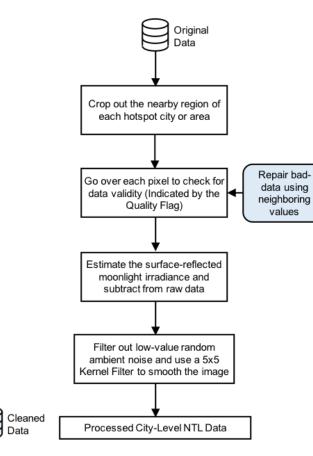
- Main issues: handle the outlier and missing data. The flowchart is shown on the right hand side.
- Key ideas: fill possible problematic data by backup data sources or historical trend.
- Different polices are designed to consider different data features.

COVID-19 IMPACT



Ā M

NASA's Night Time Lighting Data Processing Chart



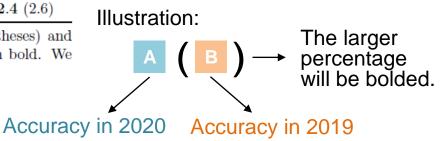
Short-Run Impact – Demand Forecasting Accuracy

ĂМ

	Table 1: Demand	l Forecasting Err	or in U.S. Electr	icity Markets [%]].
Market	March	April	May	June	July
CAISO	3.4(2.7)	3.9(2.8)	6.0(2.7)	4.3(4.1)	3.9(3.1)
MISO	2.9(1.6)	3.0(1.3)	1.7(1.3)	2.4(1.8)	1.7 (1.6)
ISO-NE	2.5(2.3)	2.7(2.5)	3.1(2.4)	2.5(2.4)	2.1(3.1)
NYISO	2.3(2.8)	2.7(3.1)	2.0(3.2)	2.4(3.1)	2.0(2.8)
PJM	2.9(1.9)	2.8(2.3)	2.4(1.7)	2.7(2.0)	1.8(2.4)
SPP	4.9(4.0)	4.5(3.8)	3.9(3.1)	3.1(3.0)	4.2(3.0)
ERCOT	1.8(2.7)	2.3(2.2)	2.9(2.3)	2.5 (3.0)	1.4(2.1)
Mean	3.0(2.6)	3.1 (2.6)	3.1 (2.4)	2.8(2.8)	2.4(2.6)

Note: The above data are forecasting errors in 2020 (outside parentheses) and 2019 (within parentheses). The smaller error items are highlighted in bold. We cover the results from March 1 to July 15 for both years.

Observations: The forecasting accuracy is slightly dropped in March, April and May, and recovered in the next two months.



Short-Run Impact – Renewable Energy

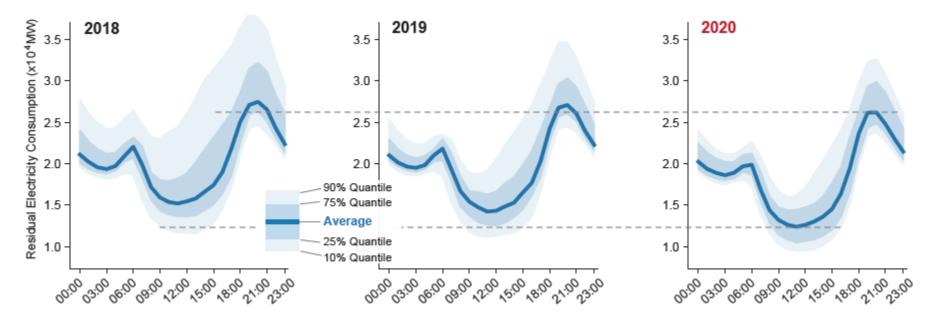
A M

-				
Market	2017	2018	2019	2020
CAISO	21.0	23.8	25.5	26.1
MISO	8.3	7.4	9.1	12.3
ISO-NE	3.1	3.4	3.6	4.8
NYISO	3.2	2.6	3.2	3.4
PJM	2.7	2.6	3.2	3.9
SPP	22.6	23.7	27.1	33.1
ERCOT	18.6	20.5	21.3	27.8
Mean	11.4	12.0	13.3	15.9

Table 2: Proportion of Renewable Generation in U.S. Electricity Mark	kets [%].	
--	-----------	--

- **Observations**: Slight increase can be observed in all electricity markets.
- Further Analysis: After eliminating the original growth trend, NYISO and CAISO are performing different from other markets --- the renewables in NYISO and CAISO are suffering extra decrease of their market shares.
- More details can be found in the reference below.

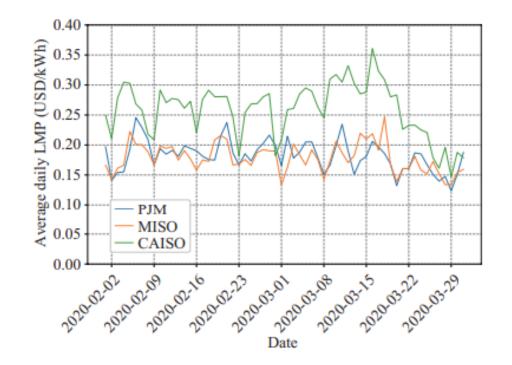
Short-Run Impact – Duck Curve Profile



• The "Duck Curve" for California ISO is shifted lower compared to previous years during the COVID-19 outbreak.

Short-Run Impact – Locational Marginal Price

- In addition to the load profile change, the electricity market is also under unprecedented disturbances as a result of the COVID-19 outbreak.
- **Observations**: Prices are going down severely in most electricity markets during the COVID-19 pandemic.
- Here, price refers to average daily locational marginal price.

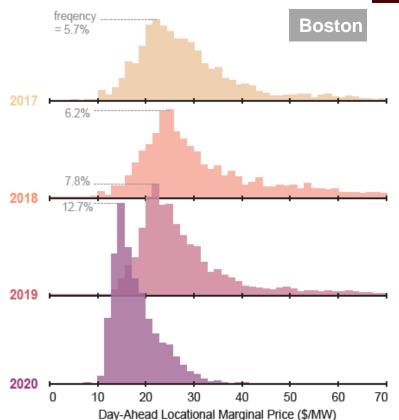


H. Zhong, Z. Tan, Y. He, L. Xie and C. Kang, "Implications of COVID-19 for the electricity industry: A comprehensive review", CSEE Journal of Power and Energy Systems, 2020.

Short-Run Impact – Locational Marginal Price

- The distribution of LMP in Boston Hub is showing an irregular shape with a tighter spread and lower peak compared to the same time period in previous years
- How to quantify: Abnormal Price Index.

This index is based on the price distributions. More details are provided in the reference below.



Outline

- COVID-19 as a Public Health Crisis: Timeline
- Short-run Impact on the U.S. Electricity Sector
- Cross-Domain Data-driven Analysis: Some Preliminary Insights
- What's Next? A Predictive Model
- Concluding Remarks

A Cross-Domain Approach to Analyzing the Short-Run Impact of COVID-19 on the U.S. Electricity Sector

Guangchun Ruan^{1,2}, Dongqi Wu¹, Xiangtian Zheng¹, Haiwang Zhong^{2,3}, Chongqing Kang^{2,3}, Munther A. Dahleh⁴, S. Sivaranjani^{1,*}, and Le Xie^{1,5,*,†}

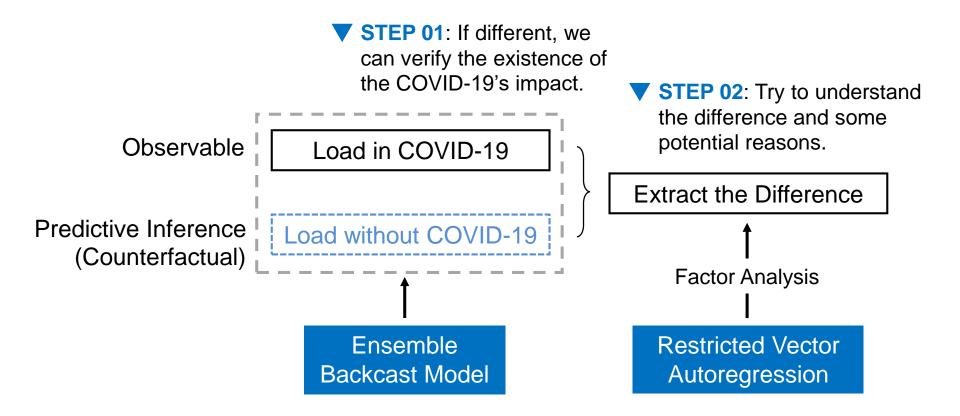
¹Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
²Department of Electrical Engineering, the State Key Lab of Control and Simulation of Power Systems and Generation Equipment, Tsinghua University, Beijing 100084, China.
³Institute for National Governance and Global Governance, Tsinghua University, Beijing 100084, China.
⁴Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
⁵Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA.
*Co-last author.

[†]Lead Contact, Corresponding author: le.xie@tamu.edu

G. Ruan, D. Wu, X. Zheng, H. Zhong, C. Kang, M. A. Dahleh, S. Sivaranjani, and L. Xie, "A Cross-Domain Approach to Analyzing the Short-Run Impact of COVID-19 on the U.S. Electricity Sector", *Joule*, 2020 (accepted, available: https://arxiv.org/abs/2005.06631[Online])

Methodology to Track the Impact

COVID-19 IMPACT



Ă M

Ensemble Backcast Model

• This **Backcast model** is applied to eliminate the effect of weather, calendar and economics variables, and then providing <u>a more reliable estimation of the counterfactual</u>.

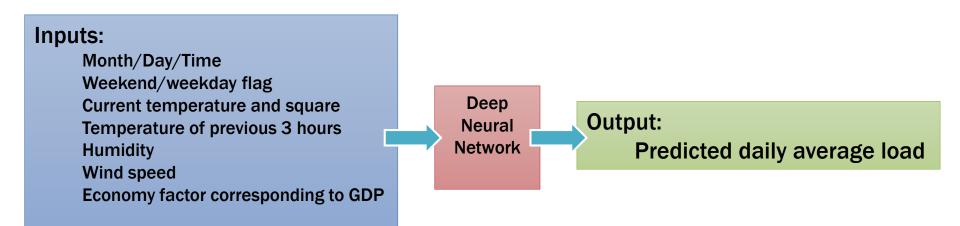
- **Base Model Design** Test different inputs combination, different preprocessing methods and different model architectures.
 - Average accuracy is higher than 98%.

Random Search to formulate an ensemble model

- Train 800 models (\pm 20% fluctuation of hidden cell numbers) and select the top 200 with the highest estimation accuracy.
- Validation: apply this model for January and February 2020, the deviations are expected to be small (a basic hypothesis).

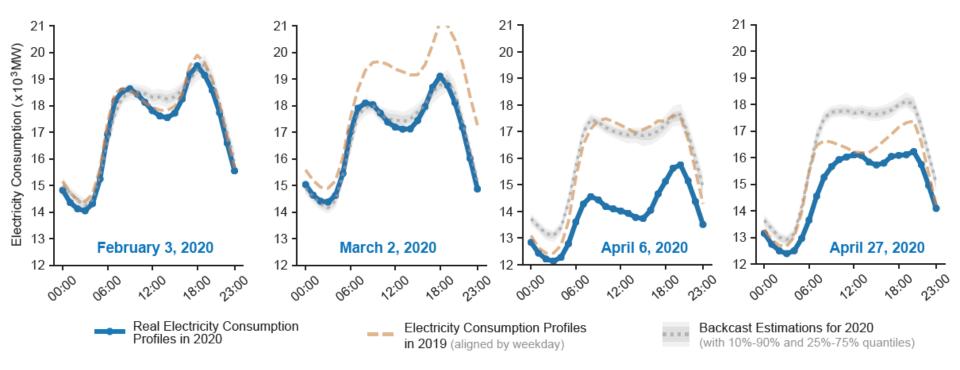
Backcast Model Design

- A Deep Neural Network is used in developing backcast models
- The model is trained using existing data from 2017 to 2019 and verified using 2020 Jan. and Feb. Data



Backcast Model

The load profile of NYC during COVID-19 is much lower compared to backcast model
 prediction and previous year record



ĂМ

Key Findings

Visible Impact Across RTOs

Electricity Consumption Reduction (%)	CAISO	MISO	ISO-NE	NYISO	PJM	SPP	ERCOT
Average in February	-1.31	-0.14	2.15	0.84	0.54	-0.90	-1.52
	[-4.10, 1.24]	[-2.09, 1.77]	[-0.47, 4.58]	[-1.47, 3.14]	[-1.65, 2.57]	[-3.18, 1.27]	[-4.06, 0.86]
Average in March	2.68	1.77	5.24	4.51	2.68	2.47	1.30
	[0.52, 4.78]	[-0.41, 3.88]	[2.33, 7.88]	[2.01, 7.00]	[0.19, 5.02]	[0.36, 5.14]	[-1.00, 3.43]
Average in April	9.24	10.24	9.47	10.20	9.44	7.72	6.36
	[6.64, 11.72]	[7.88, 12.66]	[6.26, 12.32]	[7.26, 12.91]	[6.74, 12.07]	[4.49, 10.71]	[3.77, 8.80]
Average in May	6.46	10.71	10.44	10.47	7.35	9.24	4.44
	[3.24, 9.35]	[8.28, 13.16]	[6.70, 13.90]	[7.17,13.54]	[4.45, 10.20]	[6.22, 12.07]	[2.10, 6.59]
Average in June	0.29	3.49	1.79	5.72	0.14	2.66	2.41
	$[-2.74,\ 3.04]$	[1.44, 5.54]	[-1.78, 5.06]	[2.37, 8.78]	$[-2.57, \ 2.52]$	[-0.05, 5.17]	[0.54, 4.06]
Electricity Consumption Reduction (%)	Boston	Chicago	Houston	Kansas City	Los Angeles	New York City	Philadelphia
Average in February	0.40	0.09	-0.55	0.10	-1.12	0.43	0.75
	[-1.93, 2.60]	[-2.41, 2.43]	[-3.02, 1.93]	[-2.76, 2.89]	[-4.27, 1.83]	[-2.12, 2.90]	[-1.98, 3.40]
Average in March	7.12	2.95	-0.53	0.24	3.32	5.27	3.94
	[4.63, 9.53]	[0.26, 5.49]	[3.01, 1.70]	[-3.44, 3.57]	[0.61, 5.85]	[2.60, 7.80]	[-0.96, 6.86]
Average in April	[4.63, 9.53] 11.32	[0.26, 5.49] 9.81	[3.01, 1.70] 5.33	[-3.44, 3.57] 9.04	[0.61, 5.85] 11.06	[2.60, 7.80] 14.10	[-0.96, 6.86] 8.93
Average in April		1	1 1		1 / /	1 - 1	1 7 7
Average in April Average in May	11.32	9.81	5.33	9.04	11.06	14.10	8.93
	11.32 [8.55, 13.93]	9.81 [6.70, 12.66]	5.33 [2.63, 7.79]	9.04 [5.00,12.55]	11.06 [8.11,13.82]	14.10 [11.26, 16.80]	8.93 [5.42, 12.18]
	11.32 [8.55, 13.93] 9.36	9.81 [6.70, 12.66] 9.51	5.33 [2.63, 7.79] 3.63	9.04 [5.00,12.55] 7.01	11.06 [8.11,13.82] 3.91	14.10 [11.26, 16.80] 14.77	8.93 [5.42,12.18] 8.24

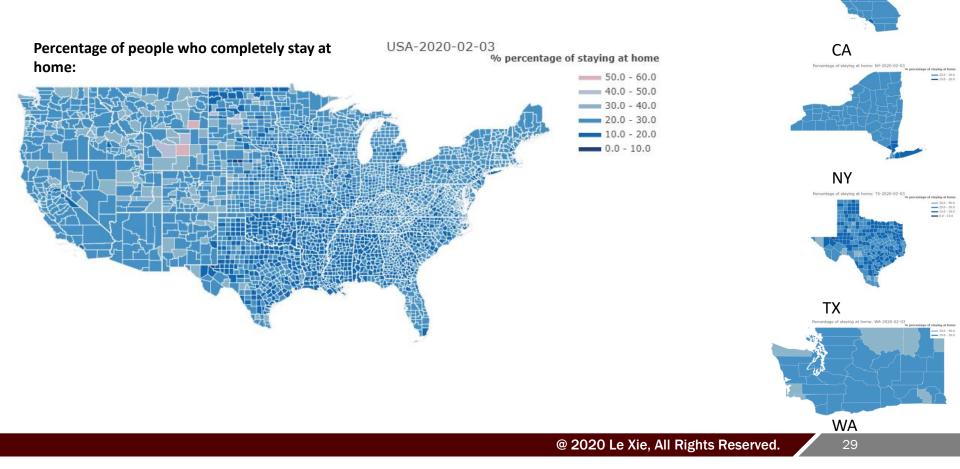
Note: The regional transmission organizations are listed in an order from the Federal Energy Regulatory Commission, and the cities are given in an alphabetical order. Significant Impact in Typical Cities

1. How to Explain the Load Change?

2. What may be the best indicator?

→ Important and unexplored resources: cross-domain data.

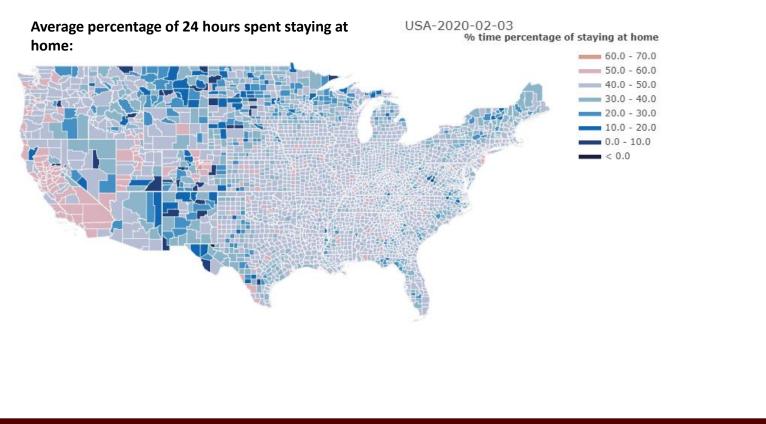
Social Distancing in the U.S.

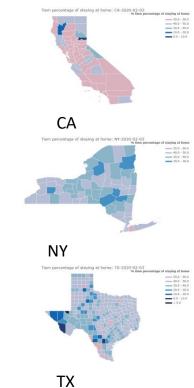


Percentage of staying at home: CA-2020-02-03

20.0 - 30

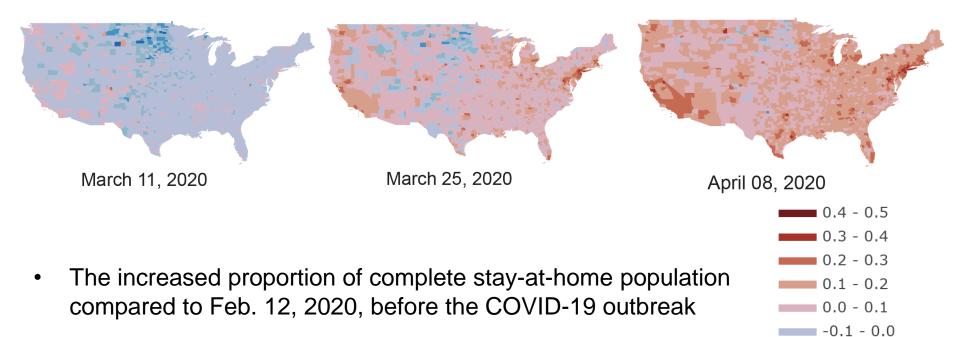
Stay-at-home Rate in the U.S.





Tem procentings of straining at home: WA-302%-02. Tem proceedings of the straining of the

Social Distancing Patterns in the USA



• All days are Wednesdays and non-holidays

-0.2 - -0.1

-0.3 - -0.2 -0.4 - -0.3 -0.5 - -0.4

Outline

- COVID-19 as a Public Health Crisis: Timeline
- Short-run Impact on the U.S. Electricity Sector
- Cross-Domain Data-driven Analysis: Some Preliminary Insights
- What's Next? A Predictive Model
- Concluding Remarks

Vector Autoregression (VAR)

 VAR is a multi-variate stochastic process used in modelling the linear inter-dependencies among time series

 Pioneered by Nobel laureate economist Christopher A. Sims for modelling macroeconomic dynamics



https://en.wikipedia.org/wiki/Christopher_A. Sims

Vector Autoregression

- In a VAR model, all variables are modelled in the same way
- The state evolution of every variable is affected by:
 - ✓ Its own lagged values (number of lags is the *order* of the model)
 - ✓ Lagged values of other variables
 - ✓ Constant intercept and random error term
- Example: Two-variable VAR with order 1:

Intercept Error

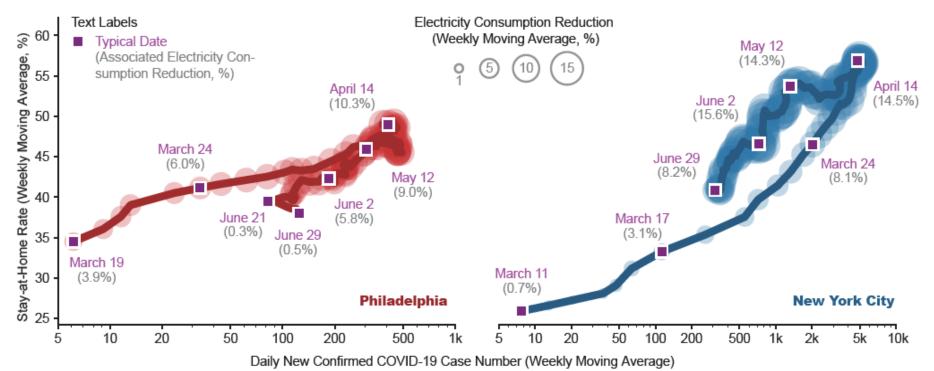
$$\begin{bmatrix} x_{1,t+1} \\ x_{1,t+1} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{1,t} \\ x_{2,t} \end{bmatrix} + \begin{bmatrix} e_{1,t+1} \\ e_{2,t+1} \end{bmatrix}$$
Next state State

Vector Autoregression

- Determining a VAR model of order *P* requires the computation of:
 - ✓ Coefficient matrices $[A_{t-1}, A_{t-2}, ..., A_{t-p}]$ for each lagged state
 - ✓ Constant intercept matrix C
- Usually formulated as an overdetermined system identification problem and is solved using Ordinary Least-Square (OLS)
- Training data are selected from March to May to capture the dynamics during the COVID-19 outbreak

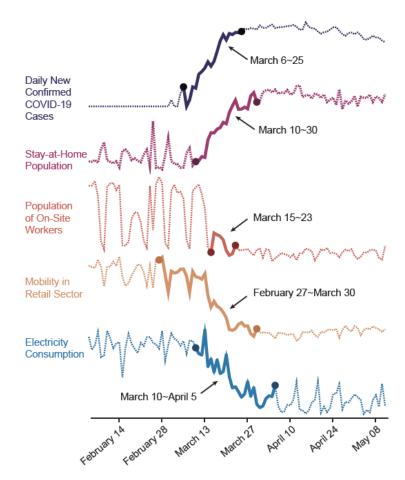
Trace of Load Reduction and COVID 19 Confirmed Cases

- Cases 🏧
- The traces show strong correlation between severity of COVID-19 outbreak, complete stay-at-home population and electricity consumption



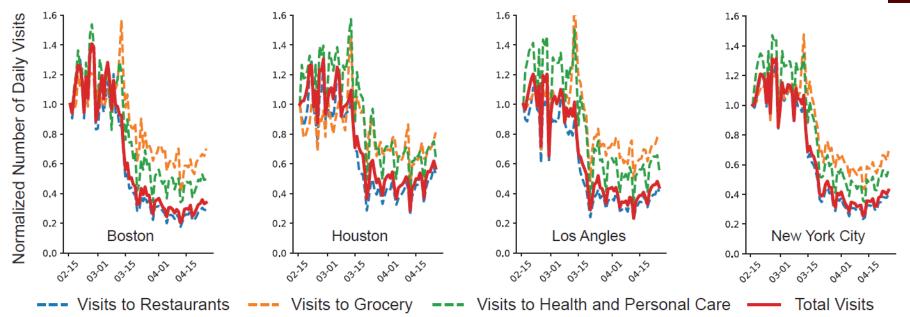
Possible Indicators of Consumption

- Varying time-scale response of social distancing from top-down v.s. bottom-up
- Very strong inertia can be observed in the load reduction. The load changes in 2-3 days are mainly due to its own trend. Often 1-2 weeks later, other factors gradually make a more evident impact.
- Slight rebounds of on-site workers and retail mobility around the end of April coincided with the re-opening policies



Ă M

Shutdown Patterns in the USA



- Normalized number of daily visits to three selected POI categories:
 - ✓ Restaurants, grocery and health/personal care
 - ✓ The number shows the relative value compared to Feb.15, 2020 (Saturday)

Ă M

Variables Selection

- The following variables are selected as input candidates for the VAR model:
 - $\checkmark\,$ Logarithm of load Reduction in MW
 - ✓ Logarithm of New Daily Confirmed Case
 - ✓ Stay-at-Home Population
 - Number of devices that stay at home completely
 - ✓ Median Home Dwell Time Percentage
 - Median of the sampled population
 - ✓ Population of Full/Part-time On-site Workers
 - ✓ Mobility in Retail Sector
 - Logarithm of the number of visitors to retail POIs

VAR Input Verification

- <mark>а</mark>м
- The variables selected for the VAR model are pre-verified using statistical tests:
- Augmented Dicket-Fuller (ADF) Test:
 - ✓ The stationarity of *detrended* time-series is a prerequisite for VAR calibration.
 - \checkmark ADF is a unit root test to examine the stationarity of a time-series variable.
 - ✓ Test result is indicated by the value of Akaike Information Criterion (AIC).
- Cointegration Test:
 - \checkmark The input timeseries should not have long-term correlation.
 - \checkmark Such correlation is indicated by the presence of cointegration.

Stock, J. H. & Watson, M. W. Vector Autoregressions. J. Econ. Perspectives 15, 101–115 (2001).

Restricted VAR

- Motivation Granger Causality Wald Test
 - ✓ A probabilistic method to estimate casual relationships among random variable represented as time-series.
 - ✓ Intuition: Events in the *future* cannot affect the *past*.
 - Causality can be *statistically tested* by examining the present value of one timeseries and lagged values of another time-series.
- The VAR model should NOT have counter-logical causal relationships
 - $\checkmark\,$ It makes no sense that load reduction is "causing" new COVID-19 cases.
 - $\checkmark\,$ These relationships need to be eliminated from the VAR model.
 - ✓ Hence we use **Restricted** VAR to impose constraints such that the corresponding entries in the coefficient matrices are **equal to zero**.

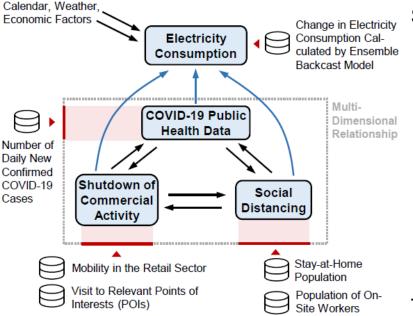
Stock, J. H. & Watson, M. W. Vector Autoregressions. J. Econ. Perspectives 15, 101–115 (2001).

Restricted VAR Verification

ĀМ

- The validity of Restricted VAR model is verified from four perspectives
- Unit Root Test for Model Stationarity
 - \checkmark The model also needs to be stationary.
 - ✓ A commonly used technique is ADF test.
- Ljung-Box Test and Durbin-Watson for Residual Autocorrelation
 - \checkmark Endogeneity of the residual may render the regression result invalid.
 - ✓ LB test H_0 : residual are i.i.d; H_a : residual have serial-correlation.
 - ✓ DW test H_0 : residual are serially uncorrelated; H_a : residual come from a 1st order auto-regression process.

Restricted VAR



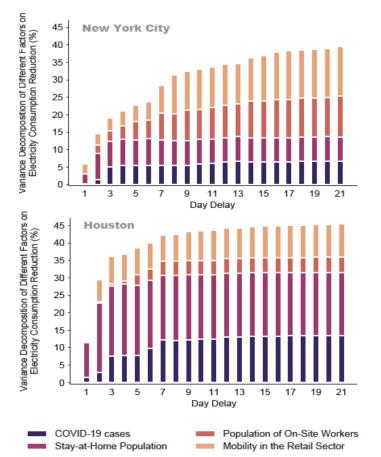
Some indicators:

- Electricity Consumption: Daily consumption (calculated using the ensemble backcast model)
- COVID Cases: daily new confirmed case number.
- Social Distancing: social distancing factors (completely stay-at-home and on-site worker population)
- Shutdown: Population mobility in the retail sector and number of visits to Point-of-Interests

The overall model is fine-tuned to fit the real-world data.

Ā M

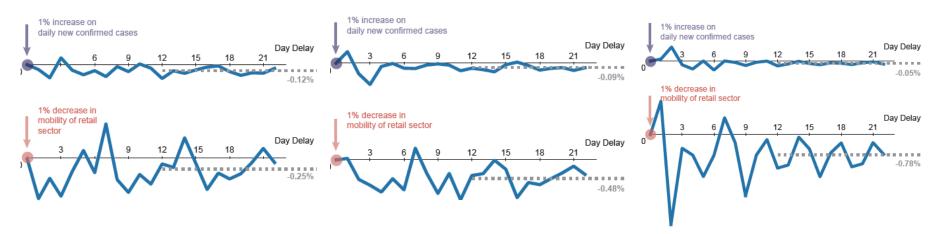
Restricted VAR Results - FEVD



- Figures on the left show the *variance decomposition (VD)* of the load reduction rate for *NYC* and *Houston*.
- The height of each color block indicates the proportion of variance contribution from the corresponding input variable
- Cities' results are diverse. Although NYC has similar proportion contributed by the other four variables as *Houston*, *Houston* is more likely to be affected by the stay-at-home population. Additionally, *Houston* has a faster dynamic of the change of electricity consumption.

Restricted VAR Results – Impulse Response

 Percentage Change of Electricity Consumption in Response of the Change of Other Factors



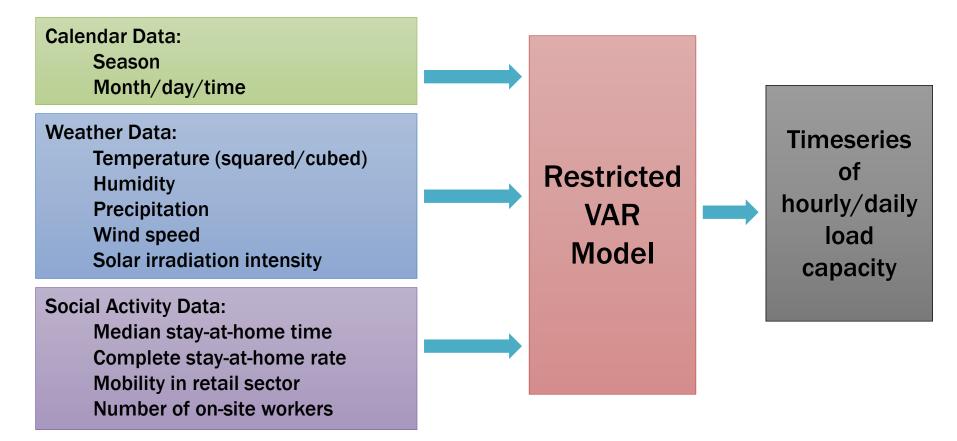
- The impulse responses describe the dynamic evolution of the load reduction that would result from a unit shock (1%) in one of the influencing factors
- In NYC, 1% increase in daily new COVID-19 cases results in 0.25% load reduction in steady state, while 1% decrease in retail mobility in Houston results in 0.78% load reduction.
- The change in Houston load is relatively more sensitive to variation in commercial activity

Prediction Using Restricted VAR Model

- Once the parameters of the VAR model has been determined, it can be used to forecast an arbitrary number of periods into the future:
 - \checkmark The first future state is **only dependent on past** *P* known measurements.
 - ✓ The predicted values can be used recursively to generate more predictions.
- However, unlike weather forecasts which is widely available days in advance, there is currently no reliable forecast for Social Mobility data
 - ✓ Appropriate models derived from factors including public policies may be developed.
- Forecast results from Restricted VAR model can be used in evaluating the effect on electricity sector for possible lockdown and isolation policies in the future for government decision making
 - ✓ A paper has already adopted this idea in load forecasting, see the reference below.

Y. Chen, W. Yang, and B. Zhang, "Using Mobility for Electrical Load Forecasting During the COVID-19 Pandemic", arXiv preprint arXiv: 2006.08826, 2020

Public Policy Support: A Predictive VAR Model



Outline

- COVID-19 as a Public Health Crisis: Timeline
- Short-run Impact on the U.S. Electricity Sector
- Cross-Domain Data-driven Analysis: Some Preliminary Insights
- What's Next? A Predictive Model
- Concluding Remarks

Concluding Remarks

- The overall electricity sector in the US is undergoing volatile changes.
 - ✓ The Northeastern region in particular.
- The change in electricity consumption is highly correlated with cross-domain factors including COVID-19 confirmed cases, degree of social distancing and level of commercial activities.
- Conventionally used indicators for load forecast, reliably and risk assessment could be augmented to include cross-domain factors during the process of re-opening the economy.

- Correlation with socioeconomic activity data set (higher resolution)
- Policy evaluation and long-term change on the electricity consumption
- You are welcome to go through our data hub (<u>https://github.com/tamu-</u> engineering-research/COVID-EMDA), and your feedback is greatly appreciated!

Thank You! Questions?

Thank You, and Stay Safe! Le.xie@tamu.edu