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The Importance of Outages: Huge impact

Annual Business Losses from Gnd Problems The real victim of power outages are businesses in general
US$’000 (2010); average cost of one hour power interruption in the US
per type of customer

Primen Study: $1508 annually for power outages and quality issues
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The Value of Prediction: Mitigation

International Electricity Grid Reliability REU Wildfire Mitigation Plan

REU has developed FOUR PROGRAMS to implement EIGHT STRATEGIES.
Program 1 was approved May, 2019 and Programs 2-4 were approved December 2019.
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The Power of Data Analytics: Risk assessment

Asset Management Risk Map Outage Management Risk Map Operation Risk Map
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M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P. Dehghanian, and P. -C. Chen, "Predicating Spatiotemporal Impacts of Weather on Power Systems
using Big Data Science," Springer Verlag, Data Science and Big Data: An Environment of Computational Intelligence, Pedrycz, Witold, Chen, Shyi-Ming (Eds.), ISBN

978-3-319-53474-9, 2017.
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Overall Goal: Improved resilience

Disturbance and Impact Resilience
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Big Data: Properties
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Big Data: Properties
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Big Data Analytics: Challenges

* Spatiotemporal correlation
e Scalability
* Missing data

* Bad data diversity

e \/arious types Of uncertainties Nodes: a)Input data: X = ( ) Sensor Data, () Weather Data,
@ Missing Data, @Bad Data )

k) Output: Y = Outage Probabhility
Branches: B =___Geographical distance between nodes
—— Network impedance matrix
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Big Data Analytics: Challenges

Overview of the Analytics Process Model

e 8B\ a

Interpret,

Identify Identify Select Clean Transform Analyze Evaluate,
Business Data the the the the  and Deploy
Problem  Sources Data Data Data Data  the Model
Post-

Preprocessing Analytics processing
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Applications: Outages caused by weather

* Background

* Transmission Insulator Failure Predictions

* Transmission Outage Prediction

* Prediction of Outages due to Distribution Vegetation

e Distribution Transformer Failure Prediction
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Background

P. Dehghanian, B. Zhang, T. Dokic and M. Kezunovic, “Predictive Risk Analytics for Weather-Resilient Operation of Electric Power Systems,”
in IEEE Transactions on Sustainable Energy, Vol. 10, No., pp. 3-15, January 2019.
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Causes

2015

7
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5 R
Equipment °

Major causes of power outages in the U.S. 18.3%

— \Weather/Tree-related

Equipment —
failure

Unknown/ —
Other
Public or Animal — j
contact __J L

Power Grid failure Maintenance

1%

What causes our power outages?

Animal

5-yr. average Human
Equipment

29% ™% Miscellaneous

Vegetation
o8

33%

Weather

Equipment
25.4%

21%

Source: Alaska Electric light and Power Company Source: We Energies

= Animal (206)

W Faulty Equipment/Human Error
(921)

® Planned (175)

® Unknown (578)

= Vehicle Accident (354)

m Weather/Trees (966)

u Theft/Vandalism (30)

® Overdemand (6)

Source: Annual Eaton Investigation 2013
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Manifestation

Observed Outages to the Bulk Electric System, 1992-2012
Events
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FIGURE 1. US. Electric Grid Disruptions
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1 992 1 996 2000 2004 2008 201 2 The Department of Energy tracks major electric disturbance events through Form OE-417. Utilities submit information about qualifying

incidents, including when they occurred, where they occurred, what triggered them, and how many customers were affected. Notably, while the
SOUfce H Energy |nf0ﬂn atlon Adm ln[stratnn reported number of non-weather-related events is high, the vast majority of incidents resulting in customer outages occur because of weather.

Union of Concerned Scientists 2015; www.ucsusa.org/lightsout
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Weather Data
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BD Data Properties

VELOCITY VOLUME
Source Data Type Temporal Resoluti Spatial Resoluti Measurements
Automated Surface Land-Based 1 min 900 stations Air Temperature, Dew Point, Relative Humidity, Wind Direction, Speed
Observing System and Gust, Altimeter, Sea Level Pressure, Precipitation, Visibility... - - - - . —
v Data €1 Data Source VOLUME VELOCITY VERACITY
- R - - ERTRE - ata Class
Level-? Next Generation|  Radar Data 5 min 160 hlgh-resnlut.mn Precipitation and Atmospheric Movement (Measurements) (Data file size) (Rate of use) (Accuracy)
Weather Radar Doppler radar sites -
v SM 120GB per day/ device Every 5-15 min error <2.5%
A NOAA Satellite Satellite Data  |Hourly, daily, monthly 4 km cloud coverage, hydrological observations (precipitation, cloud liquid
Database water, total precipitable water, snow cover...). pollution monitoring... » PMU 30GB per day/device 240 samples/sec error <1%
Vaisala U.S. National | Lightning Data Instantaneous Median Location |Date and Time, Latitude and Longitude, Peak amplitude, Polarity, Type of Utility
Lightning Detection Accuracy 200-500m event: Cloud or Cloud to Ground A | measurements ICM 5GB per day/device 250 samples/sec error <1%
R Network
National Digital ‘Weather Forecast 3 hours 5 km ‘Wind Speed, Direction, and Gust, Relative Humidity, Convective Hazard DFR 10MB per fault/device 1600 samples/sec error <0.2%
Forecast Database Data Outlook, Tornado Probability, Probability of Thunderstorms...
e— - - . - - R Radar [27] 612 MB/day per radar Every 4-10 min 1-2dB; ms!
1 | Texas Parks & Wildlife | Texas Ecological static 10m Distribution of different tree spices
Department Mapping Systems . . VIS<2%;
Satellite [28] At least 10 GB per day Every 1-15 min
Data IR<1-2K
Texas Natural Resources NAIP year S50em—1m High Resolution Imagery 1
E Information System . X T-1.8°F. P<1%, Wind
Weather data | AS0S [29] 10 MB/day per station Every | min speed- %, RR.- 4%
National Aeronautics 3D Global static 1km Canopy height data :
T and Space Vegetation Map E NLDN [30] 40 MB/day During lightning SE < 200m, PCE <15%
Administration
National Cooperative g88URGO statie 10m Soil type NDFD [31] 5-10 GB/day per model |1 -12 hours Varies by parameter
Soil Survey
Y Historical Outage instantaneous Feeder section | Location, start and end time and date, number of customers affected, cause T TPWD EMST [32] |2.7 GB for Texas etatic SE<10m
Data code
Tree Trimming day Feeder Feeder location, date, trimming period, number of customers affected, cost Vegetation and | TNRIS [33] 300 GB for Texas static SE<1m
Data of trimming Topography
Network GIS data static Infinity (shapefile) Poles: location, material/class, height Y LIDAR [34] 7 GB for Harris Co <tatic HE <1m,
Feeders: location; conductor size, count, and material; nominal voltage e T ) VE < 150 ¢m
Utility Historical day Tower location Start and end date and time, location, type (maintenance, replacement),
Maintenance Data cost, number of customers affected
Insulator asset datal static Infinity (shapefile) Surge Impedances of Towers and Ground Wires, Footing Resistance,
Component BIL
In-field instantaneous Tower location  [Leakage Current Magnitude, Flashover Voltage. Electric Field Distribution,|
measurements Corona Discharge Detection, Infrared Reflection Thermography, Visual

Inspection Reports
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Implementation

Real-time Weather Data Historical Data
Wind
‘ Lightning ’ ‘ Direction/ ‘ | Precipitation ‘
Speed
' Solar ,
Radiati Radar Satellite Weather
adiation Data
istori

Spatiotemporal / o _
Correlation Processing \I-hstorn:al Data Analysis

'—l
Visualization —»(“)
v

T&D Planning
Distribution Management System
‘ Outage Management System ’

Transmission System Marketing
T&D Asset Management
etc
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Weather Driven Risk Analysis

Risk = Hazard x Vulnerability x Economic Impact

/1

Probability of hazardous
weather conditions

Depends on Weather
Forecast

Pick a moment in time (or a
period of time) and estimate
probability of hazardous
conditions

\

Probability that hazardous
conditions will cause an
event in the network

Depends on Historical
Weather and Outage Data

Learn from the historical
data what may happen if
hazardous conditions occur
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Expected economic impact
in case of an event

Depends on the type of
economic loss that the
user wants to consider

Identify type of economic
loss that is of interest for
the study and calculate it
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Transmission Insulation Coordination

M. Kezunovic, T. Dokic, R. Said, “Optimal Placement of Line Surge Arresters Based on Predictive Risk Framework Using Spatiotemporally
Correlated Big Data,” at CIGRE General Session, Paris, France, Aug. 2018.
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Asset Management for Insulators

FAILURE

Decreasing Constant Increasing WEATHER HAZARD
A Failure | Failure | Failure lightning, precipitation, UV radiatjon ...
Rate | Rate | Rate increasing of leakage currents
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I I o A
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T s
0 | | ’0 UV radiation At Risk A E
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*A. Tzimas, et al. "Asset management frameworks for outdoor composite insulators."
*https://commons.wikimedia.org/wiki/File:Bathtub curve.svg#/media/File:Bathtub curve.svg IEEE Transactions on Dielectrics and Electrical Insulation 19.6 (2012).
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Risk Framework

(Risk = Hazard x Vulnerability) (Economic Impact)

R = P[T] - P[C|T] u(C)

Intensity T — Lightning peak current
Hazard — Probability of a lightning strike
Vulnerability — Insulator vulnerability for a given hazard

Economic Impact — Estimated losses in case of insulator breakdown (cost of
maintenance and replacement)

© 2020, Mladen Kezunovic
All Rights Reserved
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Insulator Risk Model

Hazard + Vulnerability— Ris

© 2020, Mladen Kezunovic
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Modeling the Insulator BIL

Conventional method BD approach

BIL determined by insulator manufacturer. *  Manufacturers standard BIL used only as a initial value. Standard
BIL changes during the insulator lifetime.

a Flashover
e

Probability of
o
£

Voltage [kV]
* Insulator breakdown probability determined based on spatio-
Insulator breakdown probability temporally referenced historical data and real-time weather
determined statistically. forecast using data mining.
Economic impact not taken into account. * Risk model includes economic impact in case of insulator

breakdown.

© 2020, Mladen Kezunovic
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Prediction
Model
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Risk Maps
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Optimal Location of LSAs

264 LSAs locations
Total Risk Reduction = 72.69%

Legend

LSA_264
LSA_Present
0

,

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap
contributors, and the GIS user community

All Rights Reserved
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Transmission Outage Prediction

T. Dokic, M. Pavlovski, Dj. Gligorijevic, M. Kezunovic, Z. Obradovic, “Spatially Aware Ensemble-Based Learning to Predict Weather-Related
Outages in Transmission,” The Hawaii International Conference on System Sciences — HICSS, Maui, Hawaii, January 2019.
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Historical Weather Data

Py @ Weather Stations

®  Substations

Transmission Lines

[:] Service Area

Esri, HERE, DeLorme, Mapmylindia, © OpenStreetMap contributors, and
the GIS user community

Fractions of missing data from ASOS observations

Wind Wind Wind Weather

Temperature Dew Humidit Precipitation Pressure
P Point y Direction Speed P Gust Code

0.146 0.148 0.148 0.145 0.134 0.312 0.265 0.378 0.336
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Weather Forecast
No Outage - Precipitation No Outage — Wind Speed
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Prediction Model

Estimate of an outage event with a probabilistic score (logistic
regression)

 Various forecasted weather parameters as features related
to an outage event

A binary classification model to classify outage and no-
outage events

The output of an event is a probability score

© 2020, Mladen Kezunovic
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Logistic regression

Logistic Regression [Kezunovic, HICSS 2018] (LR)

+ outputs outage probabilities
+ unconstrained convex optimization
— ignores spatial correlations between substations

Spatially-Aware Logistic Regression

+ embeds substations using [Newman, PNAS 2006]
+ accounts for spatial correlations
— cannot capture useful spatial substructures

Collaborative Logistic Ensemble Classifier (CLEC)
+ inspired by [Pavlovski, I/CAI 2018]
+ able to learn from spatial substructures
+ aims to account for generalization performance

© 2020, Mladen Kezunovic
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Results — Outage Occurrence Prediction

Experimental Setup

Training: data from 1999 to 2010

Prediction horizon: 2010-2018

Substations were embedded into a 50-dimenstional space based on their spatial proximity
CLEC was run with M = 30 components

n = 30% of the training data were sampled to construct the subset for each LR component

Model Acc. AUC F1 Bias

LR 0.8467 | 0.9278 | 0.8097 | 0.6821
LR (spatial) | 0.8624 | 0.9292 | 0.8242 | 0.7075
CLEC 0.8919 | 0.9313 | 0.8532 | 0.7685

. . Prediction performance w.r.t. different evaluation metrics.
Discussion P

* LR (spatial) obtains greater classification performance compared to LR

= supports the hypothesis that spatial information is truly relevant for this task
* CLEC outperforms its alternatives, yielding higher values for accuracy, AUC and F1
* Large liftin Bias

= shows the benefit of using a subsampling-based ensemble scheme

© 2020, Mladen Kezunovic
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Risk Maps
No Outage Multiple Lightning Outage

Outage
@
Outage
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No outages occurred => outage probabilities are smaller than 60% for all substations
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< @
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0-20
20-40
40-60 ' °
° &
€]

e00C0®O@

Esri, HERE, DeLorme, Mapmylndia, © OpenStreetMap
contributors, and the GIS user community

Outages occurred = the area around the outages has points with probability over 80%

In general: Both LR and CLEC do well at guessing the areas of outage occurrences

However: CLEC does better than LR making prediction more precise on a spatial level
= the number of high risk areas far away from the outage locations is much smaller

© 2020, Mladen Kezunovic
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Distribution Vegetation Management

T. Dokic, M. Kezunovic, “Predictive Risk Management for Dynamic Tree Trimming Scheduling for Distribution Networks,” IEEE Transactions
on Smart Grid, Vol. 10, No. 5, pp. 4776-4785, September 2018.
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Risk Framework

(Risk = Hazard x Vulnerability) (Economic Impact)
R =P[T]: P[C|T] u(C)
Intensity T — Weather severity
Hazard — Probability of a severe weather impact

Vulnerability — Probability of a vegetation caused outage for a given
hazard

Economic Impact — Cost of periodic and reactive tree trimming

© 2020, Mladen Kezunovic
All Rights Reserved 35




Vegetation Risk Model

PC
Hazard + Vulnerability—+ Risk . o

0 0

Economic
Risk
© 2020, Mladen Kezunovic

All Rights Reserved 36




BD use in modeling weather Impacts

Hazard Weather Data: Weather Events:
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Big Data for Vegetation Management

Enviromental Impacts:
precipitation, wind,

temperature, humidity,
lightning

CCROWTH bl e TIME
I | T —»
Tree Trimming Outage Reactive Tree Periodic Tree
Performed Trimming Trimming Scheduled
1 1 1 1 1 1 1 L1l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
| | 1 | | | 1 1 LI | | 1 1 1 1 1 1 1 1 1

WEATHER MEASUREMENTS
temperature; wind speed, gust and direction; precipitation; humidity; pressure, lightning parameters
| | l l l l
|

| I I I I
VEGETATION MAP FROM HIGH RESOLUTION IMAGERY

distance to the lines, growth rate, canopy height, canopy spread, helth index, tree species
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Risk Model

Network GIS Tree Trimming
Data Data
Weather /\\ v
Forecast Historical Historical Historical Economic
Weather Data Outage Data Vegetation Data Impact
Specification

v N

Hazard Vulnerability Economic

Impact

A 4

Risk
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Optimal Tree Trimming

For total of N feeder sections maximize the reduction in vegetation risk

T 1 N
max{ R = 2 N z ARp ¢« Fpt
n=1

t=1

Foo= 0, section not trimmed n
mt T, section trimmed
r-—=-=-=-=--=-=-"="-"="-"="-"="=-="-"="-"="-="-"-"="-"="-"="-"="-"=="======= 1
: Constrains: T N : t
| Total cost of tree trimming limit: Z Z Fnp: - PCy: < PA P 7
I I n.t
I . . . _ 41 PC
| One section trimmed at the time: For t=1,.,T, X3 _ 1 Fp, =1 "ot
PA
I

Difference in component risk
before and after action:

b t
ARn,tZ R efore RZ,C: er

n,t

feeder section

total number of feeder sections
time instance

number of time instances
reduction in risk after trimming
cost of trimming on one section

total allocated tree trimming budget
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Risk Maps Optimal Tree
Risk Map Trimming Schedule

TrimSchedule
Date
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Overall risk reduction 32.85%
Reactive tree trimming cost reduction 27.2%
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Distribution Transformer Failure Prediction

E. Hui Ko, T. Dokic, M. Kezunovic, “Prediction Model for the Distribution Transformer Failure using Correlation of Weather Data,” CIGRE 5th
International Colloquium Transformer Research and Asset Management, Opatija, Croatia, October 2019.
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The System — South Korea

Distribution Facilities in JeonllaNam-do Area

JeonllaNam-do Area

m Number Capacity (kVA) Breaker Equipment  COS
| 104 |[EEPYE 9,252 12 1.4 72

The comparison of the number of DT in South Korea

The comparison of the number of DT

u The number of DT(EA)

300,000
250,000 247,181 233,651 247,338

200,000 186,546 182,446
159,293 157,162
150,000 130,829 136315 147,628
m,m m.zf-s
100,000 89"‘8674,376
50,000 I 37,545

AP vm v’,{ff ;
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Transformer Failures

337 27.2

|Weather ~ [EEE] 26.9

155 12.5

145 11.7

g:::(i;?::e"ame 2§ ;_g Causes of DT Failures in
25 2.0 JeonllaNam-do of South Korea
18 1.5 (2011 - 2018)

16 1.3

15 1.2

13 1.0
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Weather Data

NOAA/U.S. Air Force, Blue Marble map

Historical Weather Measurements

Lightning | Average Temperature | Highest Temperature | Relative Humidity | Maximum Wind Speed | Wind Gust
[0/1] (LI) [°F] (AT) [°F] (HT) [%] (RH) [m/s] (MWS) [m/s] (WG)
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https://www.ncdc.noaa.gov/nexradinv/chooseday.jsp?id=rksg

Logistic Regression
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Evaluation Setup

* Failure data spans from 2011 to 2018.

e The total number of DT failure is 237. The true positive rate of a classifier:

Positive correctly classified

e Data divided into the training (90% of data) and tp rate ~
testing (10% of data) sets.

Total positives

 Total of 148 of no failure cases added.

e Total number of events is 237 + 148 = 385. The false positive rate of the classifier:

Negatives incorrectly classified

* The degree of high temperature (HT) is classified fp rate ~
into three temperature thresholds: 82.4°F, 86°F,
and 89.6°F in order to make interpretation of HT
coefficient precise.

Total negatives
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Prediction Results

 HT=86 W—Hj_,—ﬁ

False Positive Rate

Receiver Operating g Event vs. Prediction of Failure
Characteristics Curve (ROC) g .,

HT=82.4 ’_,Jf 7 AUC=0.7982 (Y/ N) Y=0 Y=1
g o Y=0 113 47

E ’,,—‘ — False Positive Rate HT 860F or below
2 " HT=89.6 ] Y=1 35 190
3. g Y=0 112 47

| | : el HT 86°F - 89.6°F
: g Y=1 36 190
T AUC=0.796 S . Y=0 111 54

False Positive Rate E HT 89.6°F or above
Y=1 37 183
AUC=0.764
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Conclusions

* The weather impacts on outage is prominent through wear and tear, as well as from stresses
due to impacts of storms

* The spatial granularity of prediction and localization of outages can be improved by
embeddings and modeling of spatial interactions.

* Type of prediction algorithm depends on the application: Linear Regression, Logistic
Regression

* Areal-time mapping system is needed to observe Risk

* Predictive system allows for more proactive and cost-effective outage management, asset
management, and operation.
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Thank youl!
Questions?

Mladen Kezunovic
Tel: (979) 845-7509
E-mail: kezunov@ece.tamu.edu

© 2020, Mladen Kezunovic
All Rights Reserved



mailto:kezunov@ece.tamu.edu

PSERC

Togethers

bulldmg a plrlo;s,pemus-future :

Where energy s
clean, abundant, reliable, safe, secure and attordahle




