The Role of Big Data Analytics in Predicting Power System Outages

Mladen Kezunovic Regents Professor Texas A&M University

Pserc Webinar February 18, 2020

Outline

The Importance of Outages: Huge impact

The Value of Prediction: Mitigation

The Power of Data Analytics: Risk assessment

Overall Goal: Improved resilience

Big Data: Properties

Big Data Analytics: Challenges

Applications: Outages caused by weather

The Importance of Outages: Huge impact

Annual Business Losses from Grid Problems

Primen Study: \$150B annually for power outages and quality issues

The real victim of power outages are businesses in general

US\$'000 (2010); average cost of one hour power interruption in the US per type of customer

The Value of Prediction: Mitigation

REU Wildfire Mitigation Plan

REU has developed FOUR PROGRAMS to implement EIGHT STRATEGIES. Program 1 was approved May, 2019 and Programs 2-4 were approved December 2019.

The Power of Data Analytics: Risk assessment

Asset Management Risk Map

Outage Management Risk Map

Operation Risk Map

M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P. Dehghanian, and P. -C. Chen, "Predicating Spatiotemporal Impacts of Weather on Power Systems using Big Data Science," Springer Verlag, Data Science and Big Data: An Environment of Computational Intelligence, Pedrycz, Witold, Chen, Shyi-Ming (Eds.), ISBN 978-3-319-53474-9, 2017.

Overall Goal: Improved resilience

K Eshghi, BK. Johnson, C. G Rieger Power System Protection and Resiliency Metrics." 2015 Resilience Week, Workshop Proceedings, Idaho National Laboratory, August 2015 T.Mc. Junkin, C.G. Rieger, "Electricity distribution system resilient control system metrics." 2017 Resilience Week, Workshop Proceedings, Idaho National Laboratory, September 2017

Big Data: Properties

PSerc

Big Data Analytics: Challenges

- Spatiotemporal correlation
- Scalability
- Missing data
- Bad data diversity
- Various types of uncertainties

Big Data Analytics: Challenges

Overview of the Analytics Process Model

Applications: Outages caused by weather

- Background
- Transmission Insulator Failure Predictions
- Transmission Outage Prediction
- Prediction of Outages due to Distribution Vegetation
- Distribution Transformer Failure Prediction

Background

P. Dehghanian, B. Zhang, T. Dokic and M. Kezunovic, "Predictive Risk Analytics for Weather-Resilient Operation of Electric Power Systems," in IEEE Transactions on Sustainable Energy, Vol. 10, No., pp. 3-15, January 2019.

Source: Annual Eaton Investigation 2013

Manifestation

Source: Energy Information Administration

The Department of Energy tracks major electric disturbance events through Form OE-417. Utilities submit information about qualifying incidents, including when they occurred, where the occurred, what triggered them, and how many consoners were affected. Notably, while the reported number of non-weather-related events is high, the vast majority of incidents resulting in customer outges occur because of weather.

SOURCE: UCS ANALYSIS, BASED ON OE N.D.

© Union of Concerned Scientists 2015; www.ucsusa.org/lightsout

Weather Data

Weather Station

Radar

Satellite

Example: Apparent Temperature Data download: every 3 hours Forecast for next 3 days Data resolution: 3 hours

National Digital Forecast Database (NDFD)

BD Data Properties

			VELOCITY		VOLUME
	Source	Data Type	Temporal Resolution	Spatial Resolution	Measurements
	Automated Surface Observing System	Land-Based	1 min	900 stations	Air Temperature, Dew Point, Relative Humidity, Wind Direction, Speed and Gust, Altimeter, Sea Level Pressure, Precipitation, Visibility
v	Level-2 Next Generation Weather Radar	Radar Data	5 min	160 high-resolution Doppler radar sites	Precipitation and Atmospheric Movement
A	NOAA Satellite Database	Satellite Data	Hourly, daily, monthly	4 km	cloud coverage, hydrological observations (precipitation, cloud liquid water, total precipitable water, snow cover), pollution monitoring
R	Vaisala U.S. National Lightning Detection Network	Lightning Data	Instantaneous	Median Location Accuracy 200-500m	Date and Time, Latitude and Longitude, Peak amplitude, Polarity, Type of event: Cloud or Cloud to Ground
	National Digital Forecast Database	Weather Forecast Data	3 hours	5 km	Wind Speed, Direction, and Gust, Relative Humidity, Convective Hazard Outlook, Tornado Probability, Probability of Thunderstorms
I	Texas Parks & Wildlife Department	Texas Ecological Mapping Systems Data	static	10 m	Distribution of different tree spices
Е	Texas Natural Resources Information System	NAIP	year	50 cm – 1 m	High Resolution Imagery
т	National Aeronautics and Space Administration	3D Global Vegetation Map	static	1 km	Canopy height data
	National Cooperative Soil Survey	gSSURGO	static	10 m	Soil type
Y		Historical Outage Data	instantaneous	Feeder section	Location, start and end time and date, number of customers affected, cause code
		Tree Trimming Data	day	Feeder	Feeder location, date, trimming period, number of customers affected, cost of trimming
		Network GIS data	static	Infinity (shapefile)	Poles: location, material/class, height Feeders: location; conductor size, count, and material; nominal voltage
	Utility	Historical Maintenance Data	day	Tower location	Start and end date and time, location, type (maintenance, replacement), cost, number of customers affected
		Insulator asset data	static	Infinity (shapefile)	Surge Impedances of Towers and Ground Wires, Footing Resistance, Component BIL
		In-field measurements	instantaneous	Tower location	Leakage Current Magnitude, Flashover Voltage, Electric Field Distribution, Corona Discharge Detection, Infrared Reflection Thermography, Visual Inspection Reports

	Data Class	Data Source	VOLUME (Data file size)	VELOCITY (Bate of use)	VERACITY (Accuracy)
_		(Measurements)	(Data nie size)	(Rate of use)	(Accuracy)
v		SM	120GB per day/ device	Every 5-15 min	error <2.5%
	Utility	PMU	30GB per day/device	240 samples/sec	error <1%
A	measurements	ICM	5GB per day/device	250 samples/sec	error <1%
		DFR	10MB per fault/device	1600 samples/sec	error <0.2%
R		Radar [27]	612 MB/day per radar	Every 4-10 min	1-2 dB; m s ⁻¹
		Satellite [28]	At least 10 GB per day	Every 1-15 min	VIS<2%; IR<1-2K
I	Weather data	ASOS [29]	10 MB/day per station	Every 1 min	T-1.8°F, P<1%, Wind speed - 5%, RR - 4%
E		NLDN [30]	40 MB/day	During lightning	SE < 200m, PCE <15%
		NDFD [31]	5-10 GB/day per model	1 - 12 hours	Varies by parameter
Т		TPWD EMST [32]	2.7 GB for Texas	static	SE < 10 m
	Vegetation and	TNRIS [33]	300 GB for Texas	static	SE < 1 m
Y	Topography	LIDAR [34]	7 GB for Harris Co.	static	HE < 1m, VE < 150 cm

Implementation

Weather Driven Risk Analysis

Risk = Hazard x Vulnerability x Economic Impact

- Probability of hazardous weather conditions
- Depends on Weather Forecast
- Pick a moment in time (or a period of time) and estimate probability of hazardous conditions

- Probability that hazardous conditions will cause an event in the network
- Depends on Historical Weather and Outage Data

Learn from the historical

data what may happen if

hazardous conditions occur

- Exposted coop
- Expected economic impact in case of an event
- Depends on the type of economic loss that the user wants to consider
- Identify type of economic loss that is of interest for the study and calculate it

Transmission Insulation Coordination

M. Kezunovic, T. Dokic, R. Said, "Optimal Placement of Line Surge Arresters Based on Predictive Risk Framework Using Spatiotemporally Correlated Big Data," at CIGRE General Session, Paris, France, Aug. 2018.

Asset Management for Insulators

Risk Framework

(Risk = Hazard x Vulnerability)(Economic Impact) R = P[T] · P[C|T] u(C)

Intensity T – Lightning peak current

Hazard – Probability of a lightning strike

Vulnerability – Insulator vulnerability for a given hazard

Economic Impact – Estimated losses in case of insulator breakdown (cost of maintenance and replacement)

Insulator Risk Model

Modeling the Insulator BIL

Conventional method

• BIL determined by insulator manufacturer.

- Insulator breakdown probability determined statistically.
- Economic impact not taken into account.

BD approach

Manufacturers standard BIL used only as a initial value. Standard BIL changes during the insulator lifetime.

- Insulator breakdown probability determined based on spatiotemporally referenced historical data and real-time weather forecast using data mining.
- Risk model includes economic impact in case of insulator breakdown.

Risk Maps

PSERC

Optimal Location of LSAs

264 LSAs locations Total Risk Reduction = 72.69%

Transmission Outage Prediction

T. Dokic, M. Pavlovski, Dj. Gligorijevic, M. Kezunovic, Z. Obradovic, "Spatially Aware Ensemble-Based Learning to Predict Weather-Related Outages in Transmission," The Hawaii International Conference on System Sciences – HICSS, Maui, Hawaii, January 2019.

Historical Weather Data

Fractions of missing data from ASOS observations

Temperature	Dew Point	Humidity	Wind Direction	Wind Speed	Precipitation	Pressure	Wind Gust	Weather Code
0.146	0.148	0.148	0.145	0.134	0.312	0.265	0.378	0.336

Weather Forecast

No Outage - Precipitation

Outage - Precipitation

No Outage – Wind Speed

Outage – Wind Speed

Prediction Model

Estimate of an outage event with a probabilistic score (logistic regression)

- Various forecasted weather parameters as features related to an outage event
- A binary classification model to classify outage and nooutage events
- The output of an event is a probability score

Logistic regression

Logistic Regression [Kezunovic, HICSS 2018] (LR)

- + outputs outage probabilities
- + unconstrained convex optimization
- ignores spatial correlations between substations

Spatially-Aware Logistic Regression

- + embeds substations using [Newman, PNAS 2006]
- + accounts for spatial correlations
- cannot capture useful spatial substructures

Collaborative Logistic Ensemble Classifier (CLEC)

- + inspired by [Pavlovski, IJCAI 2018]
- + able to learn from spatial substructures
- + aims to account for generalization performance

Results – Outage Occurrence Prediction

Experimental Setup

- Training: data from 1999 to 2010 ٠
- Prediction horizon: 2010-2018 ٠
- Substations were embedded into a **50**-dimensional space based on their spatial proximity ٠
- CLEC was run with M = 30 components
- $\eta = 30\%$ of the training data were sampled to construct the subset for each LR component

Model	Acc.	AUC	F1	Bias
LR	0.8467	0.9278	0.8097	0.6821
LR (spatial)	0.8624	0.9292	0.8242	0.7075
CLEC	0.8919	0.9313	0.8532	0.7685

Discussion

Prediction performance w.r.t. different evaluation metrics.

- LR (spatial) obtains greater classification performance compared to LR ٠
 - ⇒ supports the hypothesis that spatial information is truly relevant for this task
- CLEC outperforms its alternatives, yielding higher values for accuracy, AUC and F1
- Large lift in Bias ٠
 - ⇒ shows the **benefit of using a subsampling-based ensemble scheme**

Risk Maps

- No outages occurred ⇒ outage probabilities are smaller than 60% for all substations
- Outages occurred ⇒ the area around the outages has points with probability over 80%
- In general: Both LR and CLEC do well at guessing the areas of outage occurrences
- However: CLEC does better than LR making prediction more precise on a spatial level
 - ⇒ the number of high risk areas far away from the outage locations is much smaller

Distribution Vegetation Management

T. Dokic, M. Kezunovic, "Predictive Risk Management for Dynamic Tree Trimming Scheduling for Distribution Networks," IEEE Transactions on Smart Grid, Vol. 10, No. 5, pp. 4776-4785, September 2018.

Risk Framework

(Risk = Hazard x Vulnerability)(Economic Impact)
R = P[T] · P[C|T] u(C)

Intensity T – Weather severity

Hazard – Probability of a severe weather impact

Vulnerability – Probability of a vegetation caused outage for a given hazard

Economic Impact – Cost of periodic and reactive tree trimming

Vegetation Risk Model

BD use in modeling weather Impacts

Big Data for Vegetation Management

Risk Model

Optimal Tree Trimming

For total of N feeder sections maximize the reduction in vegetation risk

$max\left\{R = \sum_{t=1}^{T} \frac{1}{N} \sum_{n=1}^{N} \Delta R_{n,t} \cdot F_{n,t}\right\}$	
$F_{n,t} = \begin{cases} 0, & \text{section not trimmed} \\ 1, & \text{section trimmed} \end{cases}$	n N
Constrains: Total cost of tree trimming limit: $\sum_{t=1}^{T} \sum_{n=1}^{N} F_{n,t} \cdot PC_{n,t} \leq PA$	t T ⊿R _{n.t}
One section trimmed at the time: For $t=1,,T$, $\sum_{n=1}^{N} F_{n,t} = 1$	PC _{n,t} PA

Difference in component risk before and after action: $\Delta R_{n,t} = R_{n,t}^{before} - R_{n,t}^{after}$ feeder section total number of feeder sections time instance number of time instances reduction in risk after trimming cost of trimming on one section total allocated tree trimming budget

Risk Maps

Optimal Tree Trimming Schedule

Overall risk reduction 32.85%

Reactive tree trimming cost reduction 27.2%

Distribution Transformer Failure Prediction

E. Hui Ko, T. Dokic, M. Kezunovic, "Prediction Model for the Distribution Transformer Failure using Correlation of Weather Data," CIGRE 5th International Colloquium Transformer Research and Asset Management, Opatija, Croatia, October 2019.

The System – South Korea

JeonllaNam-do Area

Distribution Facilities in JeonllaNam-do Area

Transformer			Protective Devices		
Bank	Number	Capacity (kVA)	Breaker	Equipment	COS
104	243	9,252	12	1.4	72

The comparison of the number of DT in South Korea

Transformer Failures

Cause	The number	Rate [%]
Aging	337	27.2
Weather	333	26.9
Corrosion	155	12.5
Animal contact	145	11.7
Out of maintenance	92	7.4
Overloading	87	7.0
Object contact	25	2.0
Tree	18	1.5
People error	16	1.3
Manufacture error	15	1.2
Flooding	13	1.0
Installment error	3	0.2
Fire	1	0.1
Total	1,240	100

Causes of DT Failures in JeonllaNam-do of South Korea (2011 - 2018)

Weather Data

Historical Weather Measurements

NOAA/U.S. Air Force, Blue Marble map https://www.ncdc.noaa.gov/nexradinv/chooseday.jsp?id=rksg

Lightning	Average Temperature	Highest Temperature	Relative Humidity	Maximum Wind Speed	Wind Gust
[0/1] (LI)	[°F] (AT)	[°F] (HT)	[%] (RH)	[m/s] (MWS)	[m/s] (WG)

Logistic Regression

Evaluation Setup

- Failure data spans from 2011 to 2018.
- The total number of DT failure is 237.
- Data divided into the training (90% of data) and testing (10% of data) sets.
- Total of 148 of no failure cases added.
- Total number of events is 237 + 148 = 385.
- The degree of high temperature (HT) is classified into three temperature thresholds: 82.4°F, 86°F, and 89.6°F in order to make interpretation of HT coefficient precise.

The true positive rate of a classifier:

tp rate $\approx \frac{Positive \ correctly \ classified}{Total \ positives}$

The false positive rate of the classifier:

fp rate $\approx \frac{Negatives incorrectly classified}{Total negatives}$

Prediction Results

Event vs. Prediction of Failure

Fuent	Failure	Prediction		
Event	(Y/N)	Y=0	Y=1	
UT 96°E or bolow	Y=0	113	47	
	Y=1	35	190	
	Y=0	112	47	
HI 80'F - 89.0'F	Y=1	36	190	
	Y=0	111	54	
HI 89.6 F Or above	Y=1	37	183	

False Positive Rate

Conclusions

- The **weather impacts on outage** is prominent through wear and tear, as well as from stresses due to impacts of storms
- The **spatial granularity of prediction** and **localization of outages** can be improved by embeddings and **modeling of spatial interactions.**
- Type of prediction algorithm depends on the application: Linear Regression, Logistic Regression
- A real-time mapping system is needed to observe Risk
- **Predictive system** allows for more **proactive and cost-effective** outage management, asset management, and operation.

Thank you! Questions?

Mladen Kezunovic Tel: (979) 845-7509 E-mail: <u>kezunov@ece.tamu.edu</u>

Together -

building a prosperous future

where energy is clean, abundant, reliable, safe, secure and affordable

