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PMU Challenges Our Research

Dimensionality reduction of 
PMU measurements.

Real-time data-driven PMU bad 
data detection.

 High dimensionality: 
Tennessee Valley Authority 
(TVA) 120 PMUs produces 
36GB data per day.

 State-of-the-art: 
primarily offline, post-
event analysis.

 High Bad Data Ratio:   
Typical PMU bad data ratio 
in California ISO ranges from 
10% to 17% (in 2011).

Online data-driven PMU-based 
early event detection.

Motivation of This Work

• [8] N. Dahal, R. King, and V. Madani, “Online dimension reduction of synchrophasor data,” 2012.
• [9] M. Patel, S. Aivaliotis, E. Ellen et al., “Real-time application of synchrophasors for improving  reliability,” 2010.
• [5] California ISO, “Five year synchrophasor plan,” California ISO, Tech. Rep., Nov 2011.
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Bus Frequency Profile of ERCOT Data. Voltage Magnitude Profile of ERCOT Data.
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No system topology, no system model. 
Total number of PMUs: 7. 

7• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.



Raw PMU Data from PJM
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Bus Frequency Profile of PJM Data. Voltage Magnitude Profile of PJM Data.

Total number of PMUs: 14 for frequency analysis
8 for voltage magnitude analysis. 

8• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.



Dimensionality Reduction - PCA
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(a) Cumulative Variance for Bus Frequency ω in Texas Data
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(b) Cumulative Variance for Voltage Magnitude Vm in Texas Data
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(b) Cumulative Variance for Voltage Magnitude in PJM

9• PCA: Principal Component Analysis 



Scatter Plot of Bus Frequency

2D Scatter plot for bus frequency. 3D Scatter plot for bus frequency.

Normal 
Condition

Abnormal 
Condition

Back to Normal 
Condition

10• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.



Scatter Plot of Voltage Magnitude

2D Scatter plot for voltage magnitude. 3D Scatter plot for voltage magnitude.

Normal 
Condition

Abnormal 
Condition

Back to Normal 
Condition

11• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.



Observations

• High dimensional PMU raw measurement data lie in 
an much lower subspace (even with linear PCA)

• Scattered plots suggest that 
Change of subspace -> Occurrence of events !

• But, what is the way to implement it? 

• Is there any theoretical justification? 
Data-driven subspace change  Indication of physical 
events in wide-area power systems

• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014. 12



Corporate PDC Data
Storage

Synchrophasor Data
Dimensionality Reduction

Data
Storage

Early Event Detection

: Phasor measurement unit
PDC: Phasor data concentrator

: Raw measured PMU data
: Preprocessed PMU data

Local PDC Local PDCLocal PDC

Early Event Detection Algorithm

Adaptive Training
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Robust Online Monitoring

Online Detection
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Theoretically justified using linear dynamical system theory [6].

• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014. 13



Theorem for Early Event Detection [6]

Using the proposed event indicator, a system event can be detected within 2-3 
samples of PMUs, i.e., within 100 ms, whenever for some selected non-pilot 
PMU i, the event indicator satisfies

( )( )itη γ≥

where       is a system-dependent threshold and can be calculated using 
historical PMU data.

γ

η

Theoretically justified

14
• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 

Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.



Sketch of the Proof [6]

• Power system DAE model

• Discretization

• Using back substitution, explicitly express output 
(measurement) y[k] in terms of initial condition x[1], 
control input u[k], noise e[k]

• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014. 15



Sketch of the Proof (conti.) [6]

• Normal conditions: training errors are small

• U0 and x[1] can be theoretically calculated by TRAINING data.

• Any changes in control inputs and initial conditions will lead to large 
prediction error.

• If system topology changes,         and        will change, resulting in a 
large prediction error.

xc∆ uc∆

• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.

16



Frequency Profile. Event Indicator Profile.
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(a) ω4 Profile During Unit Tripping Events
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(c) Zoomed-in ω4 Profile 

During 2nd Unit Tripping Event
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Number of PMUs = 7; Number of unit tripping events = 2; Sampling rate = 30 Hz.

Event Detected!

No significant Frequency Drop.
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Case Study 1: Unit Tripping in Texas

17
• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 

Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.



Case Study 2: Synthetic Networks

• 23-bus system
• 23 PMUs.
• Outputs of PMUs: ω, V.

• Siemens, “PSS/E 30.2 program operational manual,” 2009.
18
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Early Event Detection



Potential Benefits of The Algorithm

• How EARLY is the proposed algorithm?
Proposed Method: potentially within a few samples
(<0.1 seconds)

• Most Oscillation monitoring system (OMS) needs 10 
sec to detect the oscillation.

• No system topology, no system model.

• Ongoing work: event classification and localization.

21
• [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 

Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.
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Current Practice Critical Needs

Urgent need to develop 
scalable, real-time 
methods to monitor and 
improve PMU data 
quality.

Conventional bad data 
detection algorithms are 
rendered ineffective, 
novel algorithms are 
needed.

 PMU-based decision 
making tools require
accurate PMU data for 
reliable analysis.

 PMU data has higher 
sampling rate and 
accuracy requirement.

 Typical PMU bad data 
ratio in California ISO 
ranges from 10% to 17% 
(in 2011) [5].

Motivation: PMU Data Quality Problems

• [5] California ISO, “Five year synchrophasor plan,” California ISO, Tech. Rep., Nov 2011.



Current Approaches for PMU Bad Data Detection

24

 Traditional WLS state estimation: based on measurement residuals and 
Chi-squares test [11].

 PMU-based state estimator: detect phasor angle bias and current 
magnitude scaling problems [2].

 Kalman-filter-based approach: detect low-quality PMU data [3].

 Traditional Chi-squares test approach may not be effective when 
multiple low-quality measurements are presented.

 Model-based approaches require system parameter and topology 
information.

 Model-based approaches require converged state estimation results.

• [2] S. Ghiocel, J. Chow, et al. "Phasor-measurement-based state estimation for synchrophasor data quality improvement and power 
transfer interface monitoring," IEEE Tran. Power Systems, 2014. 

• [3] K. D. Jones, A. Pal, and J. S. Thorp, “Methodology for performing synchrophasor data conditioning and validation,” IEEE Tran. 
Power Systems, May 2015.

• [11] A. Abur, and A.G. Exposito. Power system state estimation: theory and implementation. CRC press, 2004.



Current Approaches for PMU Bad Data Detection

25

 Low-rank matrix factorization for PMU bad data detection [4].

 Pre-defined logics & thresholds for bad data detection [1].

 Matrix factorization involves high computational burden.

 Robustness of pre-defined logics under eventful conditions.

• [1] K. Martin, “Synchrophasor data diagnostics: detection & resolution of data problems for operations and analysis”, in Electric Power 
Group Webinar Series, Jan 2014.

• [4] M. Wang, J. Chow, P. Gao, X. Jiang, Y. Xia, S. Ghiocel, B. Fardanesh, G. Stefopolous, Y. Kokai, N. Saito, and M. Razanousky, “A 
low-rank matrix approach for the analysis of large amounts of power system synchrophasor data,” in System Sciences (HICSS), 2015 
48th Hawaii International Conference on, Jan 2015, pp. 2637–2644.
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Overview of The Proposed Approach [7]

Online PMU Bad Data Detection Algorithm

Problem Formulation
 Study spatio-temporal correlations among good / eventful / bad PMU data.
 Formulate bad PMU data as spatio-temporal outliers among other data.
 Apply density-based outlier detection technique to detect bad PMU data.

• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE 
Transactions on Power Systems. Accepted, to appear.

• [12] M. Wu and L. Xie, “Online Detection of False Data Injection Attacks to Synchrophasor Measurements: A Data-Driven 
Approach,” System Sciences (HICSS), 2017 50th Hawaii International Conference on, Jan 2017.
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Good Data VS Eventful Data VS Bad Data
Phase Angle Measured by A Western System PMU for A Recent Brake Test Event

Event Bad DataBad Data

Weak
Temporal

Correlation

Bad DataBad Data

Weak
Temporal

Correlation

Weak
Temporal

Correlation

Weak
Temporal

Correlation

Weak
Temporal

Correlation

• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. 
IEEE Transactions on Power Systems. Accepted, to appear.
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Good Data VS Eventful Data VS Bad Data
Event Bad DataBad Data Bad DataBad Data

Weak
Spatial

Correlation

Weak
Spatial

Correlation

Weak
Spatial

Correlation

Weak
Spatial

Correlation

Strong
Spatial

Correlation
• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. 

IEEE Transactions on Power Systems. Accepted, to appear.
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Features of Good / Eventful / Bad Data

PMU Bad Data: 
Spatio-Temporal 

Outlier

Criteria: Good Data VS Eventful Data VS Bad Data

 Good Data: strong spatio-temporal correlations with its 
neighbors.

 Eventful Data: weak temporal but strong spatial correlations 
with its neighbors.

 Bad Data/Attacked Data: weak spatio-temporal correlations with 
its neighbors.

• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. 
IEEE Transactions on Power Systems. Accepted, to appear.



Quantification of Spatio-Temporal Correlations [7]
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Definition of Normalized 
Standard Deviation

 Normalized standard deviation:

 Explanation:

Spatio-Temporal Correlation 
Metrics (Distance Function)

 Standard deviation of PMU curve
obtained from 𝒊𝒊𝒕𝒕𝒕𝒕 PMU channel at
𝒌𝒌𝒕𝒕𝒕𝒕 time window, normalized by the
average standard deviation of the
historical clean data of the same
PMU channel.

 For high-variance bad data:

 For low-variance bad data:

 Low-variance bad data:
un-updated data, etc.

 High-variance bad data: data
spikes, data loss, high noise,
false data injections, etc.

• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE 
Transactions on Power Systems. Accepted, to appear.



Online Detection of Low-Quality PMU Data [10]

31

Spatio-Temporal Correlation 
Metrics (Distance Function)

 For high-variance bad data:

 For low-variance bad data:

Density-Based 
Local Outlier Detection

 Local Outlier Factor [12]:

 Local Reachability Density:

 Bad Data Detection:

 LOF(p) >> 1: p contains bad data.

 LOF(p) ≈ 1: p contains good data only.
 Low-variance bad data:

un-updated data, etc.

 High-variance bad data: data
spikes, data loss, high noise,
false data injections, etc.

• [10] Breunig, Markus M., et al. "LOF: identifying density-based local outliers." ACM sigmod record. Vol. 29. No. 2. ACM, 2000.



Online Detection of Low-Quality PMU Data [7]

32
• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE 

Transactions on Power Systems. Accepted, to appear.



Numerical Results – High Sensing Noise
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Test Case Description
• 39 real-world PMU voltage magnitude data 

curves.

• PMU No. 10, 15, 23, 29 contain Gaussian 
noises (SNR = 40 db) lasting from 1s to 
1.2s.

• Line tripping fault is presented around 4s.

Numerical Results Description
• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.19s.

• Computation time for each data window is 
0.0376s.

• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. 
IEEE Transactions on Power Systems. Accepted, to appear.



Numerical Results – Data Spikes

34

Test Case Description
• 22 real-world PMU real power data curves.

• PMU No. 10, 13, 16, 21 contain data spikes 
lasting from 1.05s to 1.1s.

• Line tripping fault is presented around 4s.

Numerical Results Description
• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.18s.

• Computation time for each data window is 
0.0197s.

• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. 
IEEE Transactions on Power Systems. Accepted, to appear.



Numerical Results – Un-updated Data

35

Test Case Description
• 13 real-world PMU current magnitude data 

curves.

• PMU No. 1, 5, 7, 13 contain un-updated data 
lasting from 1s to 1.2s.

• Line tripping fault is presented around 4s.

Numerical Results Description
• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.18s.

• Computation time for each data window is 
0.0115s.
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• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. 
IEEE Transactions on Power Systems. Accepted, to appear.



Numerical Results – False Data Injections
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Test Case Description
• 39 real-world PMU voltage magnitude data 

curves.

• PMU No. 14, 18, 24, 37 contain false data 
injections lasting from 1s to 1.2s.

• Line tripping fault is presented around 4s.

Numerical Results Description
• All the 4 false data injections are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.19s.

• Computation time for each data window is 
0.040s.

• [12] M. Wu and L. Xie, “Online Detection of False Data Injection Attacks to Synchrophasor Measurements: A Data-Driven 
Approach,” System Sciences (HICSS), 2017 50th Hawaii International Conference on, Jan 2017.
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Real-Time Detection of Low-Quality PMU Data

Conclusions

An approach for PMU low-quality data detection is proposed:

 It is purely data-driven, without involving any knowledge on network
parameters or topology, which avoids the impact of incorrect
parameter/topology information on the identification results.

 It encounters no convergence issues and has fast computation
performance, which is desirable for online application.

 It is suitable for identifying low-quality data in PMU outputs under
both normal and eventful operating conditions.

• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. 
IEEE Transactions on Power Systems. Accepted, to appear.
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Concluding Remarks

PMU Challenges

 High dimensionality: 
Tennessee Valley Authority 
(TVA) 120 PMUs produces 
36GB data per day.

 State-of-the-art: 
primarily offline, post-
event analysis.

 High Bad Data Ratio:   
Typical PMU bad data ratio 
in California ISO ranges from 
10% to 17% (in 2011).

Our Research

Dimensionality reduction of 
PMU data.

Real-time data-driven PMU bad 
data detection.

Online data driven PMU-based 
early event detection.

39



Ongoing Research and Future Challenges

• How to integrate real-time physical model-based
and data-driven monitoring analytics? 

• How to analyze the root-cause and correct low-
quality data? 

• How to close the loop (control) around real-time 
streaming PMU with the presence of bad as well 
as cyber-attacked data? 

• Would PMU be needed at distribution level, for 
what purpose [13][14]? 

• Many other possibilities… 

40

• [13] Y. Zhang and L. Xie. "Online dynamic security assessment of microgrid interconnections in smart distribution 
systems." IEEE Transactions on Power Systems, Vol. 30. no. 6, pp. 3246-3254, Nov 2015

• [14] Y. Zhang and L. Xie, "A Transient Stability Assessment Framework in Power Electronic-Interfaced Distribution 
Systems," in IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 5106-5114, Nov. 2016.
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