Real-time Synchrophasor Analytics: Data Quality Monitoring and Anomaly Detection

Le Xie

Associate Professor

Department of Electrical and Computer Engineering Texas A&M University (le.xie@tamu.edu)

PSERC Webinar March 7, 2017

Acknowledgements: Research Team

- Support from PSERC (Project S-71)
- S-71 Research Team:
 - Prof. Mani Venkatasubramanian (Washington State University)
 - Prof. P. R. Kumar (Texas A&M University)
- Students:
 - Dr. Yang Chen (now with PJM)
 - Ms. Meng Wu

Acknowledgements: Industry Advisors

- Aftab Alam, California ISO
- Frankie Zhang, ISO-New England
- Chaitanya A. Baone, GE Global Research
- Santosh Veda, GE Global Research
- Paul T. Myrda, EPRI
- Liang Min, LLNL
- Mahendra Patel, EPRI
- Giuseppe Stanciulescu, BC Hydro

- Vijay Sukhavasi, Alstom
- Gurudatha Pai, Alstom
- Jay Ramamurthy, Entergy
- Yingchen Zhang, NREL
- Prashant Kansal, AEP
- Harvey Scribner, SPP
- Jay Caspary, SPP
- Xiaoming Feng, ABB
- Floyd Galvan, Entergy
- Naim Logic, SRP
- Alan Engelmann, ComEd

Presentation Outline

- Introduction
- Part I: PMU Dimensionality Reduction & Early Event Detection
- Part II: Real-Time Detection of Low-Quality PMU Measurements
- Concluding Remarks

Motivation of This Work

- [8] N. Dahal, R. King, and V. Madani, "Online dimension reduction of synchrophasor data," 2012.
- [9] M. Patel, S. Aivaliotis, E. Ellen et al., "Real-time application of synchrophasors for improving reliability," 2010.
- [5] California ISO, "Five year synchrophasor plan," California ISO, Tech. Rep., Nov 2011.

Presentation Outline

- Introduction
- Part I: PMU Dimensionality Reduction & Early Event Detection
- Part II: Real-Time Detection of Low-Quality PMU Measurements
- Concluding Remarks

Raw PMU Data from Texas

No system topology, no system model. Total number of PMUs: 7.

Raw PMU Data from PJM

Bus Frequency Profile of PJM Data.

Voltage Magnitude Profile of PJM Data.

Total number of PMUs: 14 for frequency analysis

8 for voltage magnitude analysis.

Dimensionality Reduction - PCA

Scatter Plot of Bus Frequency

2D Scatter plot for bus frequency.

3D Scatter plot for bus frequency.

Scatter Plot of Voltage Magnitude

2D Scatter plot for voltage magnitude.

3D Scatter plot for voltage magnitude.

Observations

- High dimensional PMU raw measurement data lie in an much lower subspace (even with linear PCA)
- Scattered plots suggest that Change of subspace -> Occurrence of events !
- But, what is the way to implement it?
- Is there any *theoretical* justification?
 Data-driven subspace change ⇔ Indication of physical events in wide-area power systems

Early Event Detection Algorithm

Theoretically justified using linear dynamical system theory [6].

Theorem for Early Event Detection [6]

Theoretically justified

Using the proposed *event indicator*, a system event can be detected within 2-3 samples of PMUs, i.e., within 100 ms, whenever for some selected non-pilot PMU *i*, the event indicator satisfies

$$\eta(t)^{(i)} \ge \gamma$$

where γ is a system-dependent threshold and can be calculated using historical PMU data.

$$\eta(t)^{(i)} := \frac{e(t)^{(i)}}{e^{normal}} \quad e(t)^{(i)} := \left| \frac{\tilde{y}(t)^{(i)}}{y(t)^{(i),meas}} \right| \times 100\%,$$

Sketch of the Proof [6]

• Power system DAE model

 $\dot{x}(t) = f(x(t), u(t), h(t), q(t)),$ 0 = g(x(t), u(t), h(t), q(t)),

Discretization

 $x[k+1] = A_d x[k] + B_d u[k] + \alpha[k],$ $y[k] = C_d x[k] + D_d u[k] + \varepsilon[k],$

 Using back substitution, explicitly express output (measurement) y[k] in terms of initial condition x[1], control input u[k], noise e[k]

$$y[k] = C(e^{AT})^{k-1}x[1] + \sum_{I=1}^{k-1} C(e^{AT})^{I-1}A^{-1}(e^{AT} - I)Bu[k-I] + \varepsilon[k]$$

= $y_x[k] + y_u[k] + y_\varepsilon[k],$

Sketch of the Proof (conti.) [6]

Normal conditions: training errors are small

$$\begin{split} & [c_x^{(i)} - \sum_{j=1}^{n} v_j^{(i)} c_x^{(j)}] x[1] + [y_\varepsilon^{(i)} - \sum_{j=1}^{n} v_j^{(i)} y_\varepsilon^{(j)}] + [c_u^{(i)} - \sum_{j=1}^{n} v_j^{(i)} c_u^{(j)}] U_0 \\ & = \Delta c_x x[1] + \Delta y_\varepsilon + \Delta c_u U_0 \approx 0. \end{split}$$

- U₀ and x[1] can be theoretically calculated by TRAINING data.
- Any changes in control inputs and initial conditions will lead to large prediction error.
- If system topology changes, Δc_x and Δc_u will change, resulting in a large prediction error.

^{• [6]} L. Xie, Y. Chen, and P. R. Kumar, "Dimensionality Reduction of Synchrophasor Data for Early Event Detection: Linearized Analysis," *IEEE Tran. Power Systems*, 2014.

Case Study 1: Unit Tripping in Texas

Case Study 2: Synthetic Networks

- 23-bus system
- 23 PMUs.
- Outputs of PMUs: ω , V.

• Siemens, "PSS/E 30.2 program operational manual," 2009.

Oscillation Event

Time	Sampling Points	Event
0-100s	1-3000	Normal Condition
100.03- 150s	3001-45000	Bus Disconnection (206)
150.03- 250s	4501-7500	Voltage set point changes (211)

Early Event Detection

Potential Benefits of The Algorithm

- How EARLY is the proposed algorithm? Proposed Method: potentially within a few samples (<0.1 seconds)
- Most Oscillation monitoring system (OMS) needs 10 sec to detect the oscillation.
- No system topology, no system model.
- Ongoing work: event classification and localization.

Presentation Outline

- Introduction
- Part I: PMU Dimensionality Reduction & Early Event Detection
- Part II: Real-Time Detection of Low-Quality PMU Measurements
- Concluding Remarks

Motivation: PMU Data Quality Problems

Current Practice

- PMU-based decision making tools require accurate PMU data for reliable analysis.
- PMU data has higher sampling rate and accuracy requirement.
- Typical PMU bad data ratio in California ISO ranges from 10% to 17% (in 2011) [5].

Critical Needs

- Urgent need to develop scalable, real-time methods to monitor and improve PMU data quality.
- Conventional bad data detection algorithms are rendered ineffective, novel algorithms are needed.

• [5] California ISO, "Five year synchrophasor plan," California ISO, *Tech. Rep.*, Nov 2011.

Current Approaches for PMU Bad Data Detection

Model-Based Approach

- Traditional WLS state estimation: based on measurement residuals and Chi-squares test [11].
- PMU-based state estimator: detect phasor angle bias and current magnitude scaling problems [2].
- **Kalman-filter-based approach:** detect low-quality PMU data [3].
- Traditional Chi-squares test approach may not be effective when multiple low-quality measurements are presented.
- Model-based approaches require system parameter and topology information.
- Model-based approaches require converged state estimation results.
- [2] S. Ghiocel, J. Chow, et al. "Phasor-measurement-based state estimation for synchrophasor data quality improvement and power transfer interface monitoring," *IEEE Tran. Power Systems*, 2014.
- [3] K. D. Jones, A. Pal, and J. S. Thorp, "Methodology for performing synchrophasor data conditioning and validation," *IEEE Tran. Power Systems*, May 2015.
- [11] A. Abur, and A.G. Exposito. *Power system state estimation: theory and implementation*. CRC press, 2004.

Current Approaches for PMU Bad Data Detection

Data-Driven Approach

- **Low-rank matrix factorization for PMU bad data detection [4].**
- Pre-defined logics & thresholds for bad data detection [1].

Matrix factorization involves high computational burden.

Robustness of pre-defined logics under eventful conditions.

- [1] K. Martin, "Synchrophasor data diagnostics: detection & resolution of data problems for operations and analysis", in *Electric Power Group Webinar Series*, Jan 2014.
- [4] M. Wang, J. Chow, P. Gao, X. Jiang, Y. Xia, S. Ghiocel, B. Fardanesh, G. Stefopolous, Y. Kokai, N. Saito, and M. Razanousky, "A low-rank matrix approach for the analysis of large amounts of power system synchrophasor data," in *System Sciences (HICSS), 2015 48th Hawaii International Conference on*, Jan 2015, pp. 2637–2644.

Overview of The Proposed Approach [7]

Online PMU Bad Data Detection Algorithm

Key Advantages:

- Online bad data detection.
- Fast without convergence issues.
- Data-driven algorithm.
- Operate under both normal and fault-on operating conditions.

Detect Various Types of Bad Data:

- High communication noise.
- Missing data (communication loss).
- Data spikes (gross error / GPS error).
- Un-updated data.
- False data injection (cyber attacks).

[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. *IEEE Transactions on Power Systems*. Accepted, to appear.

• [12] M. Wu and L. Xie, "Online Detection of False Data Injection Attacks to Synchrophasor Measurements: A Data-Driven Approach," System Sciences (HICSS), 2017 50th Hawaii International Conference on, Jan 2017.

Good Data VS Eventful Data VS Bad Data

Phase Angle Measured by A Western System PMU for A Recent Brake Test Event

[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. *IEEE Transactions on Power Systems*. Accepted, to appear.

Good Data VS Eventful Data VS Bad Data

[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. *IEEE Transactions on Power Systems*. Accepted, to appear.

• [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. *IEEE Transactions on Power Systems*. Accepted, to appear.

Quantification of Spatio-Temporal Correlations [7]

Definition of Normalized Standard Deviation

Normalized standard deviation:

$$\sigma_i^{Norm}(k) = \frac{\sigma_i(k)}{\frac{\sum_{t=1}^{t=k-1} \sigma_i(t)\chi_C(M_i(t))}{\sum_{t=1}^{t=k-1} \chi_C(M_i(t))}}$$
$$\chi_C(M_i(t)) = \begin{cases} 1 & (M_i(t) \in C) \\ 0 & (M_i(t) \notin C) \end{cases}$$

 $(M_i(t) \notin C)$

Explanation:

✓ Standard deviation of PMU curve obtained from *i*th PMU channel at k^{th} time window, normalized by the average standard deviation of the historical clean data of the same PMU channel.

Spatio-Temporal Correlation Metrics (Distance Function)

For high-variance bad data:

$$f_{H}(i,j) = \left|\sigma_{i}^{Norm} - \sigma_{j}^{Norm}\right|$$

- High-variance bad data: data spikes, data loss, high noise, false data injections, etc.
- For low-variance bad data:

$$f_{L}(i,j) = max\left(\left| \frac{\sigma_{i}^{Norm}}{\sigma_{j}^{Norm}} \right|, \left| \frac{\sigma_{j}^{Norm}}{\sigma_{i}^{Norm}} \right| \right)$$

✓ Low-variance bad data: un-updated data, etc.

^[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE Transactions on Power Systems. Accepted, to appear.

Online Detection of Low-Quality PMU Data [10]

Spatio-Temporal Correlation Metrics (Distance Function)

For high-variance bad data:

 $f_H(i,j) = \left|\sigma_i^{Norm} - \sigma_j^{Norm}\right|$

- High-variance bad data: data spikes, data loss, high noise, false data injections, etc.
- For low-variance bad data:

 $f_{L}(i,j) = max\left(\left| \frac{\sigma_{i}^{Norm}}{\sigma_{j}^{Norm}} \right|, \left| \frac{\sigma_{j}^{Norm}}{\sigma_{i}^{Norm}} \right| \right)$

 Low-variance bad data: un-updated data, etc.

Online Detection of Low-Quality PMU Data [7]

[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE Transactions on Power Systems. Accepted, to appear.

Numerical Results – High Sensing Noise

Test Case Description

- 39 real-world PMU voltage magnitude data curves.
- PMU No. 10, 15, 23, 29 contain Gaussian noises (SNR = 40 db) lasting from 1s to 1.2s.
- Line tripping fault is presented around 4s.

Numerical Results Description

- All the 4 bad data segments are detected.
- System event does not cause false alarms.
- Detection delay is less than 0.19s.
- Computation time for each data window is 0.0376s.

[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. *IEEE Transactions on Power Systems*. Accepted, to appear.

Numerical Results – Data Spikes

Test Case Description

- 22 real-world PMU real power data curves.
- PMU No. 10, 13, 16, 21 contain data spikes lasting from 1.05s to 1.1s.
- Line tripping fault is presented around 4s.

Numerical Results Description

- All the 4 bad data segments are detected.
- System event does not cause false alarms.
- Detection delay is less than 0.18s.
- Computation time for each data window is 0.0197s.

[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE Transactions on Power Systems. Accepted, to appear.

Numerical Results – Un-updated Data

Test Case Description

- 13 real-world PMU current magnitude data curves.
- PMU No. 1, 5, 7, 13 contain un-updated data lasting from 1s to 1.2s.
- Line tripping fault is presented around 4s.

Numerical Results Description

- All the 4 bad data segments are detected.
- System event does not cause false alarms.
- Detection delay is less than 0.18s.
- Computation time for each data window is 0.0115s.

[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. *IEEE Transactions on Power Systems*. Accepted, to appear.

Numerical Results – False Data Injections

Test Case Description

- 39 real-world PMU voltage magnitude data curves.
- PMU No. 14, 18, 24, 37 contain false data injections lasting from 1s to 1.2s.
- Line tripping fault is presented around 4s.

Numerical Results Description

- All the 4 false data injections are detected.
- System event does not cause false alarms.
- Detection delay is less than 0.19s.
- Computation time for each data window is 0.040s.

20 Index of Synchrophasor Channels

0

[12] M. Wu and L. Xie, "Online Detection of False Data Injection Attacks to Synchrophasor Measurements: A Data-Driven Approach," System Sciences (HICSS), 2017 50th Hawaii International Conference on, Jan 2017.

40

30

Real-Time Detection of Low-Quality PMU Data

Conclusions

An approach for PMU low-quality data detection is proposed:

- It is purely data-driven, without involving any knowledge on network parameters or topology, which avoids the impact of incorrect parameter/topology information on the identification results.
- □ It encounters no convergence issues and has fast computation performance, which is desirable for online application.
- It is suitable for identifying low-quality data in PMU outputs under both normal and eventful operating conditions.

 [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE Transactions on Power Systems. Accepted, to appear.

Presentation Outline

- Introduction
- Part I: PMU Dimensionality Reduction & Early Event Detection
- Part II: Real-Time Detection of Low-Quality PMU Measurements
- Concluding Remarks

Concluding Remarks

Ongoing Research and Future Challenges

- How to integrate real-time *physical model-based* and *data-driven* monitoring analytics?
- How to analyze the *root-cause* and *correct* lowquality data?
- How to close the loop (control) around real-time streaming PMU with the presence of bad as well as cyber-attacked data?
- Would PMU be needed at *distribution level*, for what purpose [13][14]?
- Many other possibilities...

^{• [13]} Y. Zhang and L. Xie. "Online dynamic security assessment of microgrid interconnections in smart distribution systems." *IEEE Transactions on Power Systems*, Vol. 30. no. 6, pp. 3246-3254, Nov 2015

^{• [14]} Y. Zhang and L. Xie, "A Transient Stability Assessment Framework in Power Electronic-Interfaced Distribution Systems," in *IEEE Transactions on Power Systems*, vol. 31, no. 6, pp. 5106-5114, Nov. 2016.

References

References

- [1] K. Martin, "Synchrophasor data diagnostics: detection & resolution of data problems for operations and analysis", in *Electric Power Group Webinar Series*, Jan 2014.
- [2] S. Ghiocel, J. Chow, et al. "Phasor-measurement-based state estimation for synchrophasor data quality improvement and power transfer interface monitoring," *IEEE Tran. Power Systems*, 2014.
- [3] K. D. Jones, A. Pal, and J. S. Thorp, "Methodology for performing synchrophasor data conditioning and validation," *IEEE Tran. Power Systems*, May 2015.
- [4] M. Wang, J. Chow, P. Gao, X. Jiang, Y. Xia, S. Ghiocel, B. Fardanesh, G. Stefopolous, Y. Kokai, N. Saito, and M. Razanousky, "A low-rank matrix approach for the analysis of large amounts of power system synchrophasor data," in *System Sciences (HICSS), 2015 48th Hawaii International Conference on*, Jan 2015, pp. 2637–2644.
- [5] California ISO, "Five year synchrophasor plan," California ISO, Tech. Rep., Nov 2011.
- [6] L. Xie, Y. Chen, and P. R. Kumar, "Dimensionality Reduction of Synchrophasor Data for Early Event Detection: Linearized Analysis," *IEEE Tran. Power Systems*, 2014.
- [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE Transactions on Power Systems. Accepted, to appear.
- [8] N. Dahal, R. King, and V. Madani, "Online dimension reduction of synchrophasor data," *Transmission and Distribution Conference and Exposition (T&D)*, 2012 IEEE PES.
- [9] M. Patel, S. Aivaliotis, E. Ellen et al., "Real-time application of synchrophasors for improving reliability," 2010.
- [10] M.M. Breunig, et al. "LOF: identifying density-based local outliers." ACM sigmod record. Vol. 29. No. 2. ACM, 2000.
- [11] A. Abur, and A.G. Exposito. *Power system state estimation: theory and implementation*. CRC press, 2004.
- [12] M. Wu and L. Xie, "Online Detection of False Data Injection Attacks to Synchrophasor Measurements: A Data-Driven Approach," System Sciences (HICSS), 2017 50th Hawaii International Conference on, Jan 2017.
- [13] Y. Zhang and L. Xie. "Online dynamic security assessment of microgrid interconnections in smart distribution systems." IEEE Transactions on Power Systems 30.6 (2015): 3246-3254.
- [14] Y. Zhang and L. Xie, "A Transient Stability Assessment Framework in Power Electronic-Interfaced Distribution Systems," in *IEEE Transactions on Power Systems*, vol. 31, no. 6, pp. 5106-5114, Nov. 2016.

Questions?

Le Xie (le.xie@tamu.edu)