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Motivation of This Work

PMU Challenges Our Research

[8] N. Dahal, R. King, and V. Madani, “Online dimension reduction of synchrophasor data,” 2012.
[9] M. Patel, S. Aivaliotis, E. Ellen et al., “Real-time application of synchrophasors for improving reliability,” 2010.
[5] California ISO, “Five year synchrophasor plan,” California ISO, Tech. Rep., Nov 2011.
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Voltage Magnitude Profile of ERCOT Data.

No system topology, no system model.
Total number of PMUs: 7.

[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event

Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.



Bus Frequency (p.u.)
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Total number of PMUs: 14 for frequency analysis
8 for voltage magnitude analysis.
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[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.
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Dimensionality Reduction - PCA
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Scatter Plot of Bus Frequency
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. [6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014. 10



PC,

Scatter Plot of Voltage Magnitude

2D Scatter Plot for Voltage Magnitude in Overall PCA Analysis
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[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event 1
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.



Observations

(

N

High dimensional PMU raw measurement data lie in
an much lower subspace (even with linear PCA)

Scattered plots suggest that
Change of subspace -> Occurrence of events !

But, what is the way to implement it?

Is there any theoretical justification?

Data-driven subspace change < Indication of physical
events in wide-area power systems

N

[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.
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Early Event Detection Algorithm

Early Event Detection Algorithm

: Adaptive Training Robust Online Monitoring
PCA-based

Synchrophasor Data Dimensionality Reduction
Dimensionality Reduction Storage

Online Detection

—  Approximate (1) =

PMU Measurement Y, (t,) =
: 1 () .
i i Approximation error e(t)"
Covariance Matrix C, PP ; ()
! - i
: Event indicator »(t)"
Reorder N Eigenvalues ' 1(t)
Y 0 t=t+1
2 A
Select m PCs, m[l N YES{™ n(t)” 2y —lNO
{ Event
Project Y in m-D Space Detefted! T,
v >
: . Alert to
Define Base Matrix Y, YES
& : Phasor measurement unit : Raw measured PMU data SyStem
PDC: Phasor data concentrator : Preprocessed PMU data * i Opel‘ato rs
Calculate v Update

Theoretically justified using linear dynamical system theory [6].

[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event

Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014. 13



Theorem for Early Event Detection [6]

Theoretically justified

(

Using the proposed event indicator, a system event can be detected within 2-3
samples of PMUs, i.e., within 100 ms, whenever for some selected non-pilot
PMU i/, the event indicator satisfies

IONEY

where ¥ is a system-dependent threshold and can be calculated using
historical PMU data.

e(t)l)

: . (1))
nt" = - e(t)) .= o)

y(t) (i) meas % 100%

[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.
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Sketch of the Proof [6]

 Power system DAE model
x(t) = £(x(¢),u(?),h(t), q(t)).
0= g(x(t), u(t), (t), q(¢)),
e Discretization

xk+ 1] = Agxik] + Baulk] + [A],
yik] = Cax{k] + Daulk] + €[4,

e Using back substitution, explicitly express output
(measurement) y[K] in terms of initial condition x[1],
control input u[k], noise e[K]

YK = C(e Y1) + E C(eM") 1A (e — D)Bulk— 1] + e[k
=1

Q = yxlk]| + yulk] + ye K,

[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.
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Sketch of the Proof (conti.) [6]

Normal conditions: training errors are small

o) me Daf1] + ) — Zp )y + gvﬂ-ﬂc‘ﬂﬁ]%
=1

Uo and x[1] can be theoretically calculated by TRAINING data.

Any changes in control inputs and initial conditions will lead to large
prediction error.

If system topology changes, Ac, and Ac, will change, resulting in a
large prediction error.

[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.
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Bus Frequency (p.u.)

Case Study 1: Unit Tripping in Texas

Number of PMUs = 7;

Number of unit tripping events =2;  Sampling rate = 30 Hz.
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[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.
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Case Study 2: Synthetic Networks
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Oscillation Event
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Early Event Detection
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Potential Benefits of The Algorithm

« How EARLY is the proposed algorithm?

Proposed Method: potentially within a few samples
(<0.1 seconds)

* Most Oscillation monitoring system (OMS) needs 10
sec to detect the oscillation.

* No system topology, no system model.

Ongoing work: event classification and localization.

o

[6] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event
Detection: Linearized Analysis,” IEEE Tran. Power Systems, 2014.
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Motivation: PMU Data Quality Problems

( Current Practice )

/0 PMU-based decision 3

making tools require
accurate PMU data for
reliable analysis.

€ PMU data has higher
sampling rate and
accuracy requirement.

€ Typical PMU bad data
ratio in California ISO
ranges from 10% to 17%
(in 2011) [5].

e >

¢ [5] California ISO, “Five year synchrophasor plan,” California ISO, Tech. Rep., Nov 2011.

(

Critical Needs

a2
)

@

Urgent need to develop
scalable, real-time
methods to monitor and
iImprove PMU data
qguality.

Conventional bad data
detection algorithms are
rendered ineffective,
novel algorithms are
needed.

23



Current Approaches for PMU Bad Data Detection

Model-Based Approach 4

O

O

.

Traditional WLS state estimation: based on measurement residuals and
Chi-squares test [11].

PMU-based state estimator: detect phasor angle bias and current
magnitude scaling problems [2].

Kalman-filter-based approach: detect low-quality PMU data [3].

Traditional Chi-squares test approach may not be effective when
multiple low-quality measurements are presented.

Model-based approaches require system parameter and topology
information.

Model-based approaches require converged state estimation results.

J

[2] S. Ghiocel, J. Chow, et al. "Phasor-measurement-based state estimation for synchrophasor data quality improvement and power
transfer interface monitoring," IEEE Tran. Power Systems, 2014.

[3] K. D. Jones, A. Pal, and J. S. Thorp, “Methodology for performing synchrophasor data conditioning and validation,” IEEE Tran.
Power Systems, May 2015.

[11] A. Abur, and A.G. Exposito. Power system state estimation: theory and implementation. CRC press, 2004.

24



Current Approaches for PMU Bad Data Detection

Data-Driven Approach .

0 Low-rank matrix factorization for PMU bad data detection [4].

[0 Pre-defined logics & thresholds for bad data detection [1].

“* Matrix factorization involves high computational burden.

% Robustness of pre-defined logics under eventful conditions.

[1] K. Martin, “Synchrophasor data diagnostics: detection & resolution of data problems for operations and analysis”, in Electric Power
Group Webinar Series, Jan 2014.

[4] M. Wang, J. Chow, P. Gao, X. Jiang, Y. Xia, S. Ghiocel, B. Fardanesh, G. Stefopolous, Y. Kokai, N. Saito, and M. Razanousky, “A
low-rank matrix approach for the analysis of large amounts of power system synchrophasor data,” in System Sciences (HICSS), 2015
48th Hawaii International Conference on, Jan 2015, pp. 2637—2644.
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Overview of The Proposed Approach [7]

Problem Formulation

O Study spatio-temporal correlations among good / eventful / bad PMU data.
O Formulate bad PMU data as spatio-temporal outliers among other data.
O Apply density-based outlier detection technique to detect bad PMU data.

-

(.

Key Advantages:

O

m
O
a

Online bad data detection.
Fast without convergence issues.
Data-driven algorithm.

Operate under both normal and fault-on
operating conditions.

J

. -

Transactions on Power Systems. Accepted, to appear.

b -

Detect Various Types of Bad Data:

O

O o o o

High communication noise.
Missing data (communication loss).

Data spikes (gross error / GPS error).

Un-updated data.
False data injection (cyber attacks).

o

e [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE

« [12] M. Wu and L. Xie, “Online Detection of False Data Injection Attacks to Synchrophasor Measurements: A Data-Driven

Approach,” System Sciences (HICSS), 2017 50th Hawaii International Conference on, Jan 2017.

26



Good Data VS Eventful Data VS Bad Data

Phase Angle Measured by A Western System PMU for A Recent Brake Test Event

Event | Bad Data | Bad Data | Bad Data | Bad Data |
] / ! 1
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LI . 1 UL .
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¢ [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach.

IEEE Transactions on Power Systems. Accepted, to appear.



Good Data VS Eventful Data VS Bad Data
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¢ [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach.

IEEE Transactions on Power Systems. Accepted, to appear.
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Features of Good / Eventful / Bad Data

€ Good Data: strong spatio-temporal correlations with its
neighbors.

€ Eventful Data: weak temporal but strong spatial correlations
with its neighbors.

€ Bad Data/Attacked Data: weak spatio-temporal correlations with
its neighbors.

Criteria: Good Data VS Eventful Data VS Bad Data

| y,
- A 4
_%E 0.02 ’I‘ T lt;fDa T

PMU Bad Data: [HEESENI e A S 0.

Spatio-Temporal g.‘;%z_ [+ Syncorophasor Data under Low-Guaiy Gonafion

Outlier N e e T
t%‘ _D;%fOZS —0.;'.)2 -0.015 -0.01 -0.005 0 0.005 0.01
Synchrophasor Data Values atk™ Time Instant

¢ [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach.

IEEE Transactions on Power Systems. Accepted, to appear.
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Quantification of Spatio-Temporal Correlations [7]

Definition of Normalized

Standard Deviation

= Normalized standard deviation:

Norm Ui(k)
J; (k) = t=k—1
i(thec(Mi(t)}
ZE%:’B lg‘I. =

o,  Xxc(Mi(t))

E (1 (M eo)
-I xc(M;(t)) = { 0 (M(t) ¢ C)

= Explanation:

v' Standard deviation of PMU curve
obtained from it® PMU channel at
k" time window, normalized by the
average standard deviation of the
historical clean data of the same
PMU channel.

Spatio-Temporal Correlation
Metrics (Distance Function)

= For high-variance bad data:

Norm Norm

fui.j) = |o; e

v' High-variance bad data: data
spikes, data loss, high noise,
false data injections, etc.

= For low-variance bad data:

Nor Norm
UE‘V orm | | gt
T n 7 [} —
G-:'l\‘ orm r:T*‘V orm

| 1

frli,7) = mazx

v Low-variance bad data:
un-updated data, etc.

___________________________________________________________________

e [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE

Transactions on Power Systems. Accepted, to appear.



Online Detection of Low-Quality PMU Data [10]

Spatio-Temporal Correlation i Density-Based
Metrics (Distance Function) | Local QOutlier Detection
= For high'Variance ba.d da.ta.: | i ; - Local ReaChab|||ty DenSity:
. - Vor | (rdpfinpts(p) =
fui j) = |o;" ™ — 0; ™| | i D 0eNysinpes (p) T€QCh — distatinpis(p, 0)
| | 1/( .
_ _ |NMinpts(p)|
v' High-variance bad data: data
. spikes, data loss, high noise, = Local Outlier Factor [12]:
: false data injections, etc. - '
= For Iow-variance bad data: " . LOFMMPH(F} — &l .\f.::PhUJ) i _TI:r:Pr.c{IJj
| . [Natinpis(p)]
f ’ ) G.E"‘erTIFI. ,:rj‘ffﬂ?"m . .
(2. 7) = max - = ; I _
2L r:rf*“””' r:rf"”’”” | | = Bad Data Detection:
v Low-variance dbau . v' LOF(p) >> 1: p contains bad data.

un-updated data, etc. v' LOF(p) = 1: p contains good data only.

___________________________________________________________________

* [10] Breunig, Markus M., et al. "LOF: identifying density-based local outliers.”" ACM sigmod record. Vol. 29. No. 2. ACM, 2000.



Online Detection of Low-Quality PMU Data [7]

LOF({HI:-)) =

+—No

Yes

OF(fx(+)) of previous
consecutive moving data windows _
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¥
Data quality problem
detected

No

ead synchrophasor data at t™ time
instant into current data window

Obtain fx(+) value
for each pair of
synchrophasor

curves
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for each pair of
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curves

Compute Compute
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curve
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curve
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No—»
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[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach. IEEE

Transactions on Power Systems. Accepted, to appear.
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Numerical Results — High Sensing Noise

Test Case Description

39 real-world PMU voltage magnitude data
curves.

PMU No. 10, 15, 23, 29 contain Gaussian
noises (SNR =40 db) lasting from 1s to
1.2s.

Line tripping fault is presented around 4s.

Numerical Results Description

All the 4 bad data segments are detected.

System event does not cause false alarms.

Detection delay is less than 0.19s.

Computation time for each data window is
0.0376s.

Synchrophasor Measurements with Gaussian Noises

Voltage Magnitude (pu)

Synchrophasor Channel No. 10|

Synchrophasor Channel No. 15
Synchrophasor Channel No. 23
Synchrophasor Channel No. 29

Diata with

Gaussian Noises

400

LOF Values (pu)

300

200

100

Time (s)

O F Walues of Synchrophasor Channels
WVilhen Gaussian Moises Are Presented

LOF Threshold

a
L8 10 20 30 i

Index of Synchrophasor Channels

LOF Yalues of Synchrophasor Channels

20

13

10

LOF Values (pu)

When Physical Event Is Presented

/I_DF Threshold

o 10 20 30 & ]

Index of Synchrophasor Channels

[7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach.

IEEE Transactions on Power Systems. Accepted, to appear.
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Numerical Results — Data Spikes

Synchrophasor Measurements with Spikes

g 220F
Test Case Description < 2m
D%: 180l Synchrophasor Channel Mo, 10
22 real-world PMU real power data curves. = N Synehrophasor Channel Mo. 13
o 160l Data with Spikes Synchrophasor Channel Mo, 16
] . . Synchrophasar Channel Mo, 21
PMU No. 10, 13, 16, 21 contain data spikes 0 S 3 5 5 0
lasting from 1.05s to 1.1s. e )
LOF ~alues of S:-,-'_r‘n:hrn:lphasclr Channels
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. . . "‘% 1|:||:| | -
Numerical Results Description E
= i
All the 4 bad data segments are detected. 5 0
D i E—
System event does not cause false alarms. o 5 10 15 20 25
Index of Synchrophasor Channels
e _______________________________________________________________________________________________________4
i i LIOF ~alues of Synchrophasor Channels
Detection delay is less than 0.18s. APt ot Aot =t
20
Computation time for each data window is = 45 LOF Threshald |
0.0197s. =
= 10
-
=E T
[l
o L 10 15 20 25
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¢ [7] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach.
IEEE Transactions on Power Systems. Accepted, to appear. 34



Numerical Results — Un-updated Data

x 10° Synchrophasor Measurements with Un-updated Data
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Numerical Results — False Data Injections

Test Case Description

39 real-world PMU voltage magnitude data
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Real-Time Detection of Low-Quality PMU Data

¥ Conclusions ¢

An approach for PMU low-quality data detection is proposed:

O It is purely data-driven, without involving any knowledge on network
parameters or topology, which avoids the impact of incorrect
parameter/topology information on the identification results.

O It encounters no convergence issues and has fast computation
performance, which is desirable for online application.

O It is suitable for identifying low-quality data in PMU outputs under
both normal and eventful operating conditions.
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Concluding Remarks

Our Research ~ PMU Challenges




Ongoing Research and Future Challenges

 How to integrate real-time physical model-based
and data-driven monitoring analytics?

 How to analyze the root-cause and correct low-
quality data?

 How to close the loop (control) around real-time
streaming PMU with the presence of bad as well
as cyber-attacked data?

 Would PMU be needed at distribution level, for
what purpose [13][14]?
 Many other possibllities...

e [13] Y. Zhang and L. Xie. "Online dynamic security assessment of microgrid interconnections in smart distribution
systems." IEEE Transactions on Power Systems, Vol. 30. no. 6, pp. 3246-3254, Nov 2015

* [14] Y. Zhang and L. Xie, "A Transient Stability Assessment Framework in Power Electronic-Interfaced Distribution
Systems," in IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 5106-5114, Nov. 2016.
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Le Xie
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