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Overview

Line outages cause distinctive “signatures” in the phasor data that can be
recognized via machine learning classification techniques:

multiclass logistic regression

neural network (deep learning).

Regularized versions of these techniques help to identify PMU locations that yields
most effective identification.

Most computation is moved offline (classifier training).

Collaborators (UW-Madison):

Taedong Kim

Ching-pei Lee
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Optimization in Power Systems

Optimal Power Flow

Economic dispatch / market design

Modeling renewable energy sources

Grid expansion / planning

Environmental effects e.g. air pollution
control
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AC Power Flow Model
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Figure 1. Topology of the IEEE 57-bus 

 

Does have end to prove that the set of the three parameters of the colony of ants β, ρ 

and q0 is extensively independent of the problem of optimization to solve, we applied ACO-

OPF on the network IEEE test 57 buses while using the 10 better combinations of the three 

parameters β, ρ and q0 and that give the best results for commercial traveler problem for the 

case of 30 cities [28]. The (Table 2) shows the values of actives powers, the losses of powers 

and the cost of fuel for the 10 ensemble wholes of parameters. We observe that all results are 

very near of the optimum. The average value of the cost for the 10 cases is the order of 

3173.3126 $/h. The value min of the cost is 3172.202 $/h corresponds a (β = 10, ρ = 0.6 and        

q0 = 0.3) with losses of powers 17.04 MWS. Therefore we remark that even the most distant 

cost value is acceptable since it is on the one hand moves away of the value min with only 

0.056% and on the other hand the value of the losses corresponds has this value that is 17.04 

MWS is better than the one corresponds at the value min with a report of 5.399%. 
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IEEE 57-Bus System

Set of nodes (“buses”) N
G ∈ N (generators).
D ∈ N (demand/load buses).

Set of transmission lines: L ⊂ N ×N .

For node i ∈ N ;

Complex voltage: Vie
θi .

Complex power: Pi + jQi

For transmission line (i, k) ∈ L:

Complex admittances: Yik = Gik + jBik

Power Balance Equations for each bus i:

Pi = Vi
∑
k∈N

Vk(Gik cos (θi − θk) +Bik sin (θi − θk)),

Qi = Vi
∑
k∈N

Vk(Gik sin (θi − θk)−Bik cos (θi − θk)).

Pi, Vi are given at G buses, Pi, Qi given at D
buses.Wright (UW-Madison) Outage Detection from PMU Data 3/28/17 4 / 35



AC Power Flow Problem

Power mismatch at each node i:

FPi (V, θ) := Vi
∑
k∈N

Vk(Gik cos (θi − θk) +Bik sin (θi − θk))− Pi,

FQi (V, θ) := Vi
∑
k∈N

Vk(Gik sin (θi − θk)−Bik cos (θi − θk))−Qi.

All FPi and FQi should be zero at a solution, an operation point of the grid.

AC power flow unknowns are Vi for i ∈ D, and θi for i ∈ G ∪ D:

F (V, θ) :=

FPG (V, θ)

FPD (V, θ)

FQD (V, θ)

 (square nonlinear system).

Can be solved using Newton’s method, or enhancements.
(Much recent interest in SDP relaxations.)
F (V, θ) = 0 may have no solution, or multiple solutions.
(Often have at most one operationally desirable solution, where Vi ≈ 1.)
When voltages formulated in “rectangular coordinates” (Ui + jVi), the AC
equations are a system of quadratic equations. Can all solutions be found?
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Line Outage Identification
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Goal: Fast and accurate identification of power
line outages. Important for preventing further
faults, routine monitoring, control.

Key Observation: Each outage event has a
distinctive “signature” of changes to voltage
phasor measurements.

Tool: Phasor Measurement Units (PMU) can be
placed on lines in the grid (typically near buses)
to provide streaming data about voltage phasors
and currents. Sample at 30 Hz.

Approach: Use machine learning / optimization
to recognize and classify each signature, thus
detecting outages rapidly.

Design: Use regularized optimization
frameworks to decide where to place a limited
number of PMUs in the grid, to maximize
detection performance.
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Example: 9-Bus System
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Voltage Magnitude (p.u.)

• Red: Voltages before line outages. • Blue: Voltages after line outages.

Distinctive Signature: X =
[
∆V1 ∆θ1 ∆V2 ∆θ2 · · · ∆Vn ∆θn

]T
where ∆Vi = V ′i − Vi and ∆θi = θ′i − θi for i = 1, 2, . . . , n.
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Multinomial Logistic Regression (MLR)

K classes: 1, 2, · · · ,K ⇐=⇐=⇐= Line Outages

Observation vector: X ⇐=⇐=⇐= Voltage Phasor Shifts

Outcome given an observation X: Y ∈ {1, 2, . . . ,K}.

Given X, the probability that it belongs to class j ∈ {1, 2, . . . ,K} is given by

Pr(Y = j|X) :=
e〈βj ,X〉

K∑
k=1

e〈βk,X〉
for j = 1, 2, . . . ,K

where β1, . . . , βK are regression coefficients.

Note: Pr(Y = j|X) ≈ 1 ⇐⇒ 〈βj , X〉 � 〈βk, X〉 for all k 6= j.

Need to learn regression coefficients β1, · · · , βK from observed data pairs
(Xi, Yi).
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Clusters and Coefficients
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Clusters and Coefficients
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β
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Learning Regression Coefficients

Given : M training pairs: (X1, Y1), (X2, Y2), . . . , (XM , YM ).
Require : Coefficient vectors βk, k = 1, 2, . . . ,K, such that

Yi = j ⇒ 〈βj , Xi〉 � 〈βk, Xi〉 , for k 6= j.

Joint probability of observing (Y1, Y2, . . . , YM ), given (X1, X2, . . . , XM ):

M∏
i=1

Pr(Y = Yi|Xi) =

M∏
i=1

e〈βYi
,Xi〉∑K

k=1 e
〈βk,Xi〉

Log-likelihood function f(β) while β :=
[
β1 β2 · · · βK

]
:

f(β) :=

M∑
i=1

(
〈βYi , Xi〉 − log

K∑
k=1

e〈βk,Xi〉
)

⇐ Concave function!

Maximize f to estimate coefficient β = [β1, β2, . . . , βK ].
This is a smooth convex optimization problem. Can use standard
optimization tools, e.g. stochastic gradient (for large data sets) or L-BFGS.
Solving this problem can be expensive! But it’s done offline. Once βj are
known, online computation is just a K ×M matrix-vector multiplication.
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Experiment Setup: Training Sets and Test Sets

Synthetically generated 24-hour demand data (Ornstein-Uhlenbeck process).

The feature vectors X corresponding to a particular outage j will change with
demand conditions, thus need to sample a variety of demands. (Hopefully they are
distinctive enough from other outages that we can still do effective classification.)

2000 4000 6000 8000
0

0.5

1

1.5

2

Time (x10 seconds)

1
0
0
 M

W

Real Power Demand over 24 Hours

Use L-BFGS to learn
regression coefficients

Training Set: 5 equally-spaced samples from the
first half of the 24-hour period, for each line
outage.

⇒ From historical data.

Test Set: 50 random samples from the second
half of the 24-hour period, for each line outage.

System
# of # of Samples

Outage Scenarios Training Set Test Set

14-Bus 18 90 900

30-Bus 37 185 1850

57-Bus 67 335 3350

118-Bus 170 850 8500
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Experiment Setup: Procedure

For each outage Yi, i = 1, 2, . . . ,M , sample a set of demands at the D nodes
from the random distribution above.

For each of these outage / demand pairs, solve the AC power flow equations
to obtain voltage magnitude Vk and angle θk for all nodes k = 1, 2, . . . , n.

Compare with the reference (no-outage) solution of the AC power flow
equations for this set of demands, to obtain the feature vector X, which
consists of ∆Vk and ∆θk, k = 1, 2, . . . , n.

Solve the MLR problem over all these training vectors to obtain regression
coefficients β1, . . . , βK .

Form test feature vectors, in the same manner as the training vectors.

For each test vector X, form 〈βj , X〉, j = 1, 2, . . . ,K to see how well it
predicts the outage Y that was used to generate X.

Gather statistics on test data, including misclassification error rates.
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Results: PMUs Measurements from All Buses

System
Probability Ranking DC Model

≥ 90% ≥ 70% ≥ 50% 1 ≤ 2 ≤ 3 (NAD)

IEEE 14-Bus 0% 0% 0% 0% 0% 0% 0%

IEEE 30-Bus 0% 0% 0% 0% 0% 0% 1.3%

IEEE 57-Bus 0.5% 0.3% 0.2% 0.2% 0% 0% 4.4%

IEEE 118-Bus 0.2% 0.2% 0.2% 0.2% 0.1% 0% 3.1%

Line Outage Identification Error Rates on Test Set with PMUs on All Buses.

“Probability” indicates statistics for the probability assigned by the MLR
classifier to the actual outage event.

“Ranking” indicates whether the actual event was ranked in the top 1, 2, or 3
of probable outage events by the MLR classifier.

Normalized angle distances (NAD) [6] are obtained by solving DC power flow
models for test instances using MATPOWER. (Only phase angles.)

However can’t assume that PMUs are deployed at all buses! (If so, we could
detect outages directly, rather than inferring them by changes to voltage phasors.)

Given only a limited number of PMUs, can we place them optimally?
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PMU Placement Problem

Goal: Find a subset of buses at which to locate PMUs, to maximize outage
detection performance.

Approach: sparse optimization: regularization and greedy heuristics.

Recall that the feature vector is

X = [ ∆V1 ∆θ1︸ ︷︷ ︸
Bus 1

∆V2 ∆θ2︸ ︷︷ ︸
Bus 2

· · · ∆Vn ∆θn︸ ︷︷ ︸
Bus n

]T ,

If bus i is not instrumented, we cannot observe (∆Vi,∆θi), so need to set the two
corresponding coefficients of βj (elements 2i− 1 and 2i) to zero for all
j = 1, 2, . . . ,K.

Add regularization functions to the max-likelihood objective, to suppress the
entries 2i− 1 and 2i (for each i = 1, 2, . . . , n) unless they are essential to
distinguishing between different outages. Solve for τ > 0:

β∗ = arg max
β

f(β)− τ
n∑
i=1

qi(β)

where qi(β) :=
∥∥β{2i−1,2i},·∥∥F for i = 1, · · · , n (Frobenius norm of a 2×K

submatrix).
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Greedy Group Sparse Heuristic

In the greedy variation, only one bus is selected at each “outer” iteration.

Then solve GroupLASSO to select the next bus — but remove regularization
terms (and hence bias in β) for the buses already selected.

Let S = {1, 2, · · · , n}, the set of all buses.

GroupLASSO

1: β∗ =

arg max
β

f(β)− τ
∑
i∈S

qi(β)

2: Rr = arg max
R:|R|=r,R⊆S

∑
j∈R

qj(β
∗)

Greedy Variant

1: R0 = ∅
2: for l = 1, 2, · · · , r do
3:

β∗ = arg max
β

f(β)−τ
∑

j /∈S\Rl−1

qj(β)

4: sl ← arg max
j /∈Rl−1

qj(β
∗)

5: Rl ← Rl−1 ∪
{
sl
}

6: end for

Greedy Advantage: Selection of redundant PMU locations is suppressed by
already-selected, non-penalized locations.
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Results: IEEE 57-Bus System

We enhanced the basic GroupLASSO heuristic with a Greedy Group Sparse
heuristic that selects one PMU location at a time.

5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

Number of PMUs

N
u

m
b

e
r 

o
f 

In
s
ta

n
c
e

s

Accuracy on Test Set (τ=1.0e−03)

 

 
0.0~0.5

0.5~0.6

0.6~0.7

0.7~0.8

0.8~0.9

0.9~1.0

Probability

GroupLASSO

2 4 6 8 10 12 14 16
0

500

1,000

1,500

2,000

2,500

3,000

Number of PMUs
N
u
m
b
er

of
In
st
an

ce
s

Accuracy on Test Set (τ = 10−3)

0.0 ∼ 0.5
0.5 ∼ 0.6
0.6 ∼ 0.7
0.7 ∼ 0.8
0.8 ∼ 0.9
0.9 ∼ 1.0

Greedy Heuristic

Greedy heuristic gives Highly reliable detection obtained with just 15 PMUs.

For our test networks, classification performance is as good with 25% PMUs as
with PMUs everywhere.
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PMU Locations on 30-Bus and 57-Bus Systems

 

Leonardo Electronic Journal of Practices and 
Technologies 

ISSN 1583-1078 

 Issue 13, July-December 2008 

p. 88-105 

 

98 

through 41 lines of transportation (Show in Fig 1). The base voltage for every bus is of       

135 kV. 

 
Figure 1. Topology of the IEEE 30-bus 

 
Table 1 show the coefficients of the quadratic functions of cost and the limits min and 

max of the actives powers, the technical and economic parameters of the six generators of the 

IEEE 30-bus electrical network. 

Table 1. Generators parameters of the IEEE 30-bus Electrical Network 

Bus Number 
min
iPg  

[MW] 

max
iPg  

[MW]
a 

[$/hr] 
b 

[$/MWhr] 
c  

[$/MW2hr] 
Bus 1 50 200 0 2.00 37.5·10-4 
Bus 2 20 80 0 1.75 175·10-4 
Bus 5 15 50 0 1.00 625·10-4 
Bus 8 10 35 0 3.25 83·10-4 
Bus 11 10 30 0 3.00 250·10-4 
Bus 13 12 40 0 3.00 250·10-4 

Does have end to prove that the set of the three parameters of the colony of ants ȕ, ȡ 

and q0 is extensively independent of the problem of optimization to solve, we applied ACO-

OPF on the network IEEE test 30 buses while using the 10 better combinations of the three 

parameters ȕ, ȡ and q0 and that give the best results for commercial traveler problem for the 

case of 30 cities [28]. The (Table 2) shows the values of actives powers, the losses of powers 

and the cost of fuel for the 10 ensemble wholes of parameters. We observe that all results are 

very near of the optimum. The average value of the cost for the 10 cases is the order of 

804.087 $/h. The value min of the cost is 803.123$/h corresponds a (ȕ = 12, ȡ = 0.5 and        

q0 = 0.3) with losses of powers 9.4616 MWS, while the bad value is 805.082 $/h correspond 

a (ȕ = 10, ȡ = 0.6 and q0 = 0.3) with losses of powers 9.1472 MWS.  
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Greedy Heuristic Placement Results on IEEE Test Cases

Buses τ
# of Probability Ranking DC Model

PMUs ≥ 0.9 1 ≤ 2 ≤ 3 (NAD)

14
.05 3 0.4% 0.2% 0% 0% 30.9%

.005 3 0% 0% 0% 0% 43.0%

30
.05 4 0.4% 0.4% 0% 0% 57.9%

.005 5 0% 0% 0% 0% 45.9%

57
.05 12 2.9% 2.9% 0.2% 0.2% 28.0%

.005 14 1.5% 1.5% 0.1% 0.1% 25.0%

118

.05 15 5.8% 5.8% 3.8% 3.8% 30.3%

.005 21 0.7% 0.4% 0.1% 0.1% 28.2%

The competition (based on the simpler DC power flow model) does poorly with
limited observations.
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Extension: Explicit Line Outage Information

So far, we have identified outages using only the “indirect” evidence of voltage
phasor changes from PMUs placed at certain buses.
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In fact, a PMU also measures current on its line.
⇒ Can detect outage on this line directly.

We extend the MLR framework to incorporate direct knowledge of outages.

Construct a 2n×K matrix L using parameter η > 0.

Column Lk is associated with transmission line k.

Rows 2k − 1 and 2k are associated with the buses
that can detect the outage of transmission line k.
(The two end points of the line.)

The extended observation vector X for a line-k outage:

X =

[
X

L·k

]

Features η reveal outage on this line directly.

L :=



η 0 · · · 0

η 0 · · · 0

0 η · · · 0

0 η · · · 0
...

...
. . .

...

0 0 · · · η

0 0 · · · η
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Experiments Setup

We compare the following 2 strategies for the outage identification performances.

Indirect: Direct observations are ignored. Use original features X.

Combined: Direct observations are incorporated as above; feature vectors X.

Use PMU placement for Indirect and Combined strategies.
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Results: 57-Bus System with η = 10−2

Strategy

1∗ 5 20 21 26 39 40 43 54 57 (10 PMUs)

Probability Ranking

≥ 0.9 ≥ 0.7 ≥ 0.5 1 ≤ 2 ≤ 3

Indirect 5.9% 5.9% 5.9% 5.9% 0.9% 0.9%

Combined 4.6% 4.6% 4.6% 4.6% 1.2% 1.2%

Selected Bus 5 20 21 26 39 40 43 54 57 Total

# of Lines Touching the Bus 2 2 2 2 2 2 2 2 2 18

PMU Placement Based on Indirect Observations

Strategy

1∗ 5 9 21 26 39 45 46 49 56 (10 PMUs)

Probability Ranking

≥ 0.9 ≥ 0.7 ≥ 0.5 1 ≤ 2 ≤ 3

Indirect 6.7% 6.7% 5.3% 5.3% 0.6% 0.1%

Combined 2.6% 2.6% 2.6% 2.6% 0.1% 0.1%

Selected Bus 5 9 21 26 39 45 46 49 56 Total

# of Lines Touching the Bus 2 6 2 2 2 2 2 4 4 26

PMU Placement Based on Combined (Direct + Indirect) Observations
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Wider Range of Demands

Training is for a typical single-day profile of demands. A referee asked: “What
about seasonal variations?,” that is, a wider range of demand variations.

We retrained on a training set 3x as large, scaling the original demands by .85,
1.0, and 1.15. Different optimal PMU placements, different error rates.

Results for 118-bus case show some degradation. This gets worse when we try a
wider range of demands.

# of PMUs
Load Profile (κ)

for Testing

Probability Ranking

≥ 0.9 1 ≤ 2 ≤ 3

15

(τ = 2.8× 10−1)

0.85 5.6% 5.4% 2.5% 1.8%

1.00 6.2% 6.2% 4.8% 4.7%

1.15 11.4% 11.0% 3.6% 2.1%

21

(τ = 2.25× 10−2)

0.85 1.9% 1.8% 0.1% 0.1%

1.00 0.4% 0.2% 0.1% 0%

1.15 1.1% 1.0% 0.2% 0.1%

BUT NOTE: Could improve these by training different coefficients for different
conditions — no need to use “one size fits all” parameters βj , j = 1, 2, . . . ,K.
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Deep Neural Networks

output nodes

input nodes

hidden layers

Inputs are the vectors aj , outputs
are odds of aj belonging to each
class (as in multiclass logistic re-
gression).

At each layer, inputs are con-
verted to outputs by a linear
transformation composed with an
element-wise function:

al+1 = σ(W lal + hl),

where al is node values at layer
l, (W l, hl) are parameters in the
network, σ is the element-wise
function.
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Deep Learning

The element-wise function σ makes simple transformations to each element:

Logistic function: t→ 1/(1 + e−t);

Hinge: t→ max(t, 0): ReLU

Bernoulli: t→ 1 with probability 1/(1 + e−t) and t→ 0 otherwise (inspired
by neuron behavior).

The final stage is often a multiclass-logistic-regression classifier. Lower “hidden”
layers can be viewed as transforming the raw input vector to make it easier to
classify e.g. tighten the clusters.

The example depicted shows a completely connected network — but more
typically networks are engineered to the application (speech processing, object
recognition, . . . ).

local aggregation of inputs: pooling;

restricted connectivity + constraints on weights (elements of W l matrices):
convolutions.
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GoogLeNet

Visual object recognition: Google’s State of the Art network from 2014 [5].
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Training Deep Learning Networks

The network contains many parameters — (W l, hl), l = 1, 2, . . . , L in the notation
above — that must be selected by training on the data (aj , yj), j = 1, 2, . . . ,m.

Objective has the form:
m∑
j=1

h(x; aj , yj)

where x = (W 1, h1,W 2, h2, . . . ) are the parameters in the model and h measures
the mismatch between observed output yj and the outputs produced by the model
(as in multiclass logistic regression).

Nonlinear, Nonconvex. (Also random for Bernoulli activation.)

Usually trained with stochastic gradient methods, which make small adjustments
to all the parameters based on the gradient ∇h(x; aj , yj) for a single sample
j ∈ {1, 2, . . . ,m}.
Composition of many simple functions.

WHY DOES DEEP LEARNING WORK SO WELL? is one of the great
mysteries of science today. Intense investigation going on in the machine learning
community.
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Experiments

IEEE test networks: 9, 14, 30, 57, 118.

Use same random demand data as above, but scaled by a wider range of
factors: {.5, .75, 1, 1.25, 1.5}, with same number of training data points for
each factor.

Most experiments with a single hidden layer: 100 nodes for smaller examples
and 200 nodes for 57- and 118-bus cases.

Fully connected neural network with tanh activation function.

Generate training/validation/test sets as follows:

Training; For each outage Yi, 20 points from the random demand distribution;
Validation: 10 points for each outage. (Used to choose parameter τ in PMU
selection.)
Test: 50 points for each outage. (Used to measure effectiveness of classifier.)
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PMUs on All Buses

Get baseline rates by assuming that PMUs on all buses. Compare multiclass
logistic regression (MLR) with neural network with one hidden layer (NN1).

IEEE Bus 9 14 30 57 118

MLR 0.48% 0.00% 1.76% 4.50% 15.19%

NN1 0.19% 0.43% 0.03% 0.91% 2.28%

NN1 is much better! Test error vs time for 57- and 118-bus case:
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PMU Selection

For the 57-bus case, select a subset of buses for PMU instrumentation in 2 ways:

Take the 10 optimal locations chosen by MLR for cleaner data (demands
scaled by {.85, 1, 1.15}.
Use the greedy-LASSO heuristic to choose about 11 locations.

Model Buses selected Error rate

MLR (preselected) [1 2 17 19 26 39 40 45 46 57] 42.01%

NN1 (preselected) [1 2 17 19 26 39 40 45 46 57] 3.95%

MLR (greedy-LASSO) [5 16 20 31 40 43 44 51 53 57] 29.85%

NN1 (greedy-LASSO) [5 20 31 40 43 50 51 53 54 57] 7.11%

MLR is not useful in this setting, where demands vary widely.

The “preselected” buses are better!

The latter is surprising. Overfitting?
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Test Err vs Time Charts

Preselected buses (left) and Greedy-LASSO (right).
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Tighter Clustering in NN

The effect of the hidden layer is apparently to create clusters that are separated
better than in the raw data. Measure this effect via two statistics based on the
centroid denoted by ci, which is the average of feature vectors in class i.

Distance to centroid in my own class: ‖xj − ci‖ where xj belongs to class i.

Distances between centroids: ‖ci − c`‖ for i 6= `.

Tabulate the means and standard deviations of these quantities.

Within Cluster Between Clusters

mean (std dev) mean (std dev)

Full Raw Data .30 (.14) .17 (.14)

Preselected MLR .27 (.12) .08 (.06)

Preselected NN1 3.79 (1.41) 4.61 (1.99)

Greedy-LASSO MLR .27 (.12) .08 (.05)

Greedy-LASSO NN1 2.30 (1.01) 3.27 (1.10)
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Multiple Layers

Tried experiments on 57-bus case (with 10 preselected buses) with

One hidden layer of 200 nodes;

Two hidden layers of 200 and 100 nodes;

Four hidden layers of 50, 50, 50, 50 nodes.

Evidence of overfitting, particularly in the 2-layer model.
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Multiple Layers - Larger Data Set

Increase training set size by 5X, but generate it in the same way. Train on the
1-layer and 4-layer models.

The 4-layer model overfits less here, and may ultimately give better test error.
But training time is almost 10X slower, and we did not run to completion.
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Outage Detection: Other Approaches, and Context

Outages can of course be identified by other, more direct means. But detection
via PMU readings provides a backup capability.

Other approaches proposed:

[6, 7] use DC model and phase angle changes only.

[1] use support vector machines (another machine learning technique).

[9] use compressed sensing techniques (DC model)

[2] use cross-entropy optimization (DC model)

[8] use a distributed framework that avoids sharing of raw PMU data.

Recent work [3] has applied MLR to transient PMU data.

There is also recent work on PMU placement e.g. via nonlinear integer
programming.
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Optimization & Data Analysis in Power Systems

Electrical Power Systems provides an extremely rich source of problems that
challenges all areas of optimization and data analysis.

Optimization modeling

Nonlinear equations

SDP relaxations of polynomial systems

Duality

Equilibrium problems and games

Nonlinear programming

Bilevel optimization

Classification and deep learning

Sparse optimization

Stochastic optimization

Integer programming

Online optimization and learning

......
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Questions?

Steve Wright

swright@cs.wisc.edu
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