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Major Challenges

* Non-convexity:
* Discrete decisions:
— On/off operational/maintenance decisions
— Network expansion/topology change decisions
e Continuous non-convex constraints:
— Non-convex quadratic constraints
— Differential equation constraints

e Uncertainty:

e Data-driven uncertainty modeling

e Solving huge multistage robust/stochastic
programming




Electric Power Systems Problems

e Key Optimization Problems in power system operations
from System perspective:

Generation Generation

Day-Ahead Real-Time

Unit Economic
Commitment Dispatch

Transmission Transmission
Expansion Maintenance

w

— Real-Time Economic Dispatch:
* Hourly bidding and ISO 5, 15 min dispatch

— Day-Ahead Unit Commitment:
* A day prior to operation to determine unit commitment

— Yearly generation/transmission maintenance:
— Long-term generation/transmission expansion:




Challenge: Renewable Integration

e Renewable Energy Integration in Western Interconnection

Renewable Resources Nameplate Capacity by Year
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— WECC’s Largest generation addition in 2014: 3,400 MW utility-scale solar
— Behind-the-meter solar at least 3,200 MW
— Since 2010, nearly 10,000 MW wind and 8,000 MW solar added



Challenge: Supply/Demand Uncertainty

Renewable Integration
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Supply Variation:
Wind/Solar Power Penetration
Behind-the-Meter installation

Net Load Uncertainty
Can be Huge!



Challenge: Unplanned Outages

Unplanned Generator Outages:

Unplanned Outages of Generating Units
Reported in Both 2013 and 2014
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Challenge: Dynamic Decision Making

e Uncertainty in Dynamic Decision Making

Info: Supply costs, load forecast Info: Unit commit, realized load
Decision: which units to commit Uncertainty Decision: generation level

Goal: meet demand w. min cost realized Goal: min costs meet demand
Constraints: physical, security Constraints: physical, security
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Outline

e Partl: Dealing with Non-convexity:
Optimal Power Flow (OPF)

e Part 2: Dealing with Uncertainty:
Data-driven Robust Unit Commitment (UC)




Part 1

Optimal Power Flow (OPF): Fast Convexification and

Cutting Plane Method to deal with non-convexity




AC Optimal Power Flow

Data:
e Network:

Bus 14 N - (B’ £)
\Lmd Load at bus i:

pe, qf

Bus 9 Generator at bus i:
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AC OPF Formulation: Variables and Objective

Variables:

1. Active and reactive power at generator i: (pf, qf )
2. Active and reactive power flow on line (¢,7): (pij, ¢i;)

3. Complex voltage at bus i: V; = |V;|(cos8; +isinb;) = e; +if;

Objective:

Usually a separable increasing function.




AC OPF Formulation: Constraints

(active flow balance)
(reactive flow balance)

(apparent flow limit)
(active power limits)

(reactive power limits)

Power flow equations and voltage bounds in polar coordinates

pij = —Gij|Vil? + Gi;|Vil|Vj| cos(6; — 0;) + By | Vi|[V; | sin(6; — 0;)
gij = BilVil* = By ViV | cos(0: — 6;) + Gi; ViV sin(6; — 6;)
V, <V <V

Power flow equations and voltage bounds in rectangular coordinates

pij = —Gijef + f7) + Gij(eie; + fifj) — Bij(eifj — e fi)
Gi; = Bijle] + f7) — Bijleiej + fif;) — Gijleif; — e; fi)
V2<e2 4 f2<V,




Recent Literature on OPF

Local solvers by Newton-Raphson and Interior-Point methods

Convex relaxations using semidefinite programming (SDP) and Lasserre
hierarchy: (Lavaei and Low, 2012; Madani et. al., 2013; Zhang and Tse, 2012;
Lavaei et al., 2014, Molzahn et al. 2013, Molzahn and Hiskens, 2014, Chen
et al. 2015, Madani et al. 2017)

Second order cone program (SOCP) relaxation: (Jabr 2006, Hijazi et al.,
2014)

Approximate LPs with guaranteed bounds for the AC-OPF problem on
graphs with bounded tree-width (Bienstock and Munoz, 2015)

Global optimal solutions based on branch-and-bound (Phan, 2012)




AC OPF Reformulation

* Introduce Hermitian matrix X = (e + if)(e + if)¥:
pij = —Gi;j Xii + Gi;R(Xj) + Bi; Z(Xi5)
Gij = BijXii — BijR(Xij) + Gi; 2(X55)
V<X, < V?
X is hermitian
X >0
rank(X) =1

e Standard SDP relaxation: Ignore rank constraint
 Our proposal: A new minor reformulation of rank
constraints and use simpler relaxation than SDP

14



Minor Representation

* Proposition: For a nonzero Hermitian matrix X,
X = 0and rank(X) = 1 if and only if all the
2 X 2 minors of X are 0 and X;; = 0 for all i.

 AC OPF constraints can be equivalently
reformulated as:
pl—=pi =Y py  piy=—GiyXu+GyR(Xyy) + BiZ(Xy)
jea () Gij = Bij Xii — BiyR(X;) + G T(Xi5)
Vi< Xy < V?
X is hermitian

all 2 x 2 minors of X are zero




First Type of 2 X 2 Submatrices

e Type 1:

16



Second Type of 2 X 2 Submatrices

e Type 2:

Xu  Xij
Xki Xkj

X21 X22

X3q
Igm

X33

X!
53
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Third Type of 2 X 2 Submatrices

18



First Type 2 X 2 Minors: Edge minor

* Let ¢;; = R(Xy)), s = —Z(Xy;)
e Type 1: Edge minor.

Xu Xij
Xj; X
Implies XuX — Xi;Xij = 0> ¢jcjj — (clzj + Slzj) =0
* This is the boundary of a rotated Lorentz cone in R*
— One direction is convex: c + SU < ci];cjij

— Other direction is reverse convex:

f(ClJ'Sl]) \/C +Sl] —\/ l]l JlJ g(cu’ j)

e [ is convex, g is concave
e Overestimate of f/ and underestimate of g by hyperplanes o)

=0

4 )

\




Second Type 2 X 2 Minors: 3-Cycle minor

e Type 2: 3-Cycle minor.
Xii  Xij
Xri  Xkj
" 0= X;iXxj — XijXki

= cii(crj — iskj) — (cij — isi) (Cri — iSki)

= (Ciiij — CjjCri T SijSki) — i(CiiSkj — CijSki — SijCki)

= So we have two bilinear constraints:

=0

" (CiiCrj = CijCri + SijSki) = 0
" (CiiSkj — CijSki — SijCxi) = 0

20



Third Type 2 X 2 Minors: 4-Cycle minor

e Type 3: 4-Cycle minor.

Xij  Xik

Xij Xk

" 0= XjjXye — XinXij

= (CijCik — SijSik — C1jCik + S1jSik)
—i(S;ijCik — CijSik — S1jCik — C1jSik)

= So we have two bilinear constraints:

=0

" (CijCik — SijSik — CijCik + S1jSik) = 0

. (SijClk — CijSik — S1jCik — CljSik) =0

21



3-, 4-Cycle Minors = Cycle Constraints

For a cycle C, instead of satisfying:

We write “angles sum to zero over the cycle” by the following relaxation:

Z 0;; = 2mk, for some k € Z. (1)
(i,5)€C

Condition (1) is equivalent to:

Cycle constraint:  cos( Z 0:5) = 1. (2)
(i,5)€C

Cycle constraint (2) can be reformulated as a degree |C| homogeneous poly-

nomial po =0 in Sij and Cij for (z,j) e C. )



3-Cyle, 4-Cycle, and Larger Cycles

e 3-cycle:

For a 3-cycle: cos(012 + 023 + 631) = 1 can be written as

S12€33 + €23831 + S23¢31 = 0 ,
Exactly 3-cycle minor=0
C12C33 — C23C31 + S235831 = 0.

e 4-cycle:

For a 4-cycle: cos(012 + 0oz + 034 + 041) = 1 can be written as

Exactly 4-cycle minor

=0

$19C34 + C12834 + S23C41 + 23541 = 0
C12C34 — S19834 + C23C41 — S93541 = 0.

23



Our Strategy for Solving AC-OPF

e Workhorse: SOCP relaxation for fast computation

e Strengthen SOCP relaxation for key non-convexities:

— Minor constraints: Characterize convex hull and linear outer
envelopes
— Arctangent envelopes + SDP separation:

* Arctangent envelope: Linear upper/lower approximation
e SDP separation: Lift-and-project

%gap | Time (s)
e Results: SOCP | 0.43 262
SOCP cuts | 0.08 | 207.81
— |EEE instances (Easy): SDP | 004 | 38037
up to 3375-bus Plain SOCP SDP SOCP w. Cuts
case Y%gap | time (s) | %gap | time (s) | %gap | time (s)
— NESTA (Hard): Typical | 5.14| 197 | 035| 20120 | 1.09| 54.03
up to 3375-bus Congested | 6.29 072 291] 30669 | 1.59| 101.27
Small Angle | 5.22 1.62 | 230| 30525 | 1.79| 6234
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Part 2

Data-Driven Robust Unit Commitment




Part 2: Data-Driven Robust UC

Dynamic Uncertainty Models for Temporal-
Spatial Correlations of Wind/Solar/Demand
Respecting Physical Causality Improves
Ramping Capabilities of Power System
Computational Results:

 Practical computation time 2718-bus

* Near-optimal performance

* Reduced reserve requirement and
increased reliability level




Recent Works on Robust UC and ED

 Robust Optimization for unit commitment

e Adaptive two-stage robust SCUC models
— [Jiang et. al. 2012], [Zhao, Zeng 2012],
— [Bertsimas, Litvinov, Sun, Zhao, Zheng 2013] (joint w. ISO-NE)
e RO for security optimization
— [Street et. al. 2011], [Wang et. al. 2013]
e Unifying RO with Stochastic UC
— [Wang et. al. 2013]
* New types uncertainty set
— [Guan Wang 2014] [Lorca Sun 2014] [Chen et. al. 2015]

 Robust Optimization for economic dispatch
e AGC control (two-stage: dispatch + AGC)
— [Zheng et. al. 2012]

e Affine policy (dispatch as linear function of total load)
— [Jabr 2013][Warrington2012,2013]




Dynamic Uncertainty Sets

n a multi-period problem:
et & be the uncertainty vector at time t

Uncertainty set of &; depends on the
realization of uncertainties before ¢t

Ze(&p1ie—1y) = {E; D 3upy st f(€py, upg) < U}
 For example: a dynamic interval uncertainty set:

gt = [ﬁt(f[t_l])ft(é[t_l])}
* Polyhedral dynamic uncertainty sets:
t




Dynamic Uncertainty Sets for Wind Speed

A dynamic uncertainty set for wind speed:

Seasonal pattern - " Linear dynamics:
’ Tt = Z ATy + Bug | Temporal & Spatial
s=1 correlation

Uncertainty in
Estimation with
Budget Constraints




Two-Stage Robust ED and Rolling Horizon

e Adaptive robust ED:

— Time period 1 is decision to be implemented
— Future periods with dynamic uncertainty sets

4
min {c¢'xz+ max min b'y
deDpveP” yell(z,d,p”)

Stage-2

t =1:05,1:10,..1:30




Experiment Setup

e |EEE Test Systems with 14-bus and 118-bus
e 14-bus system: 3 thermal gen, 4 wind farms,
11 loads, 20 transmission lines

THERMAL GENERATORS IN 14-BUS SYSTEM

Gen | Pmax | Pmin Ramp Cost
(MW) | (MW) | (MW/10min} | (¥MWh)

300 50 5 20

1
2 100 10 10 40
3 100 10 15 60

Daily system demand:
132.6MW-319.1MW
Avg: 252.5MW




Experiment Setup

 Wind farms:
— 4 wind farms, each of 75MW (50 GE 1.5MW)
— Real wind data: 5 min wind speed for a year
— Exhibit significant temporal/spatial correlations

— Avg wind speeds: 4.8m/s, 5.6m/s, 5.1m/s, 5.5m/s
— Avg total available wind power: 104.2MW

e Equivalent to 34.7% capacity factor
e Or 32.7% of peak load, 20% of thermal generation
e Represent significant level of wind penetration




Robust ED Improves Cost and Reliability

e Adaptive robust ED v.s. Determ Look-Ahead ED:

PERFORMANCE OF ROBUST AND DETERMINISTIC ED

LA-ED

Rob-ED

Pll-‘

0.0

0.1

0.3

0.5

0.7

1.0

Total Cost Avg (3)
Total Cost Std (%)
Penalty Avg (3)
Penalty Freq (%)

771.1
1231
88.2
1.41

T38.5
1172
77.1
1.21

734.0
1000
54.2
0.95

716.0
723
30.6
0.67

T18.2
513
15.8
0.46

742.2
221
2.4
0.28

— Cost Avg: Rob-ED 7.1% (I' = 0.5) lower than LA-ED

— Cost StD: Rob-ED 41.2% lower than LA-ED;
Rob-ED up to 82.0% lower than LA-ED
— Penalty freq: Rob-ED 52.4% lower than LA-ED;
Rob-ED up to 80.1% lower than LA-ED

34




Dynamic U Sets Pareto Dominate

e Dynamic uncertainty sets v.s. Static uncert sets

?gﬂ T T T I I

780 .

770 -

Pareto Frontier |

Cost average over 10 min periods (USD)
o
=]

+— SUS1|| suUs1: No temp
H E[;L:E 1 SUS2: No temp/spatial
71 : . . , — DUS: w. temp/spatial
960 400 600 800 1000 1200 1400
Cost std over 10 min periods (USD)

720

A. Lorca, A. Sun Adaptive Robust Optimization with Dynamic Uncertainty Sets for
Multi-Period Economic Dispatch under Significant Wind, to appear IEEE Trans Power Syst 2015 39



Issues with Two-Stage Robust UC

e Asimple two-bus two-period example:

[HRTEE —

Demand uncertainty sets:
D* = {(12,12)},
D? = {(d3,d%):d% + d} = 25,d} € [10,15]}

\pA—lzRA 1 pd =12, Ry = 1

e Claim: Two-stage robust UC is feasible
— UC solution: (x5, x5) = (1,1) fort = 1,2
— Feasible dispatch solution:
4 1 2 32 1 232
+ pi(d) =12 +2(d% — 12.5), ph(d) = 12 — 2 (d% — 12.5)

|+ i@ =125 +2(d} - 12.5), p§(d) = 12.5 — = (dj — 12.5)
— Satisfy py(d) + pp(d) = dj + dj, fap(d) < f™¥,Vd € D

36




Respecting Physical Causality is Important

e Can we find a policy p(+) that does not look into
the future? i.e. p1(dt), p?(d?, d?)?

— Because real-time dispatch cannot depend on future

* No feasible non-anticipative policy exists!

— No feasible p? s.t. for any d* € D? there exists p*
— If pX € [11,12]: p5 < 13, impossible to satisfy d* = (15,10)
— If ps € [12,13]: p4 < 13, impossible to satisfy d* = (10,15)

e Bottleneck: Ramping constraint




Multistage Robust UC

min() {ZZ (Gixl + Siul) maxZZ(‘pl
x,u.v,p(-

teT 1eEN, teT ieN,
s.T.

constraints for . w. v

pirinat < ph(d") < preest VdeD,icN, tecT

— RD;zt — SDt pt(dH- pi =t (d"™) < RU2IT + SUu

VdeD,ie N, teT
_ par < 0T (Bp (d[tl)_det) fae VdeD. teT,leN

ity =" d VdeD. teT

‘!.ENg jENd

Notation: d'l = (d'.....d")

38



Affine Multistage Robust UC

e Tractable alternative for p(:):

- {Z 2 (Gomi+ Sl) +max > ) G (“’5 DD wﬁjsd?) }

teT ieNy teT ieNyg t}jENg
s.t.

constraints for @, u, v

Pt Swit Y Y Wied; <pi*fai VdED,i€Ng teT

sc{l,....t} i€Ny

39



Simplified Affine Policies

Spatial Aggregation

General affine policy:

Simpler information basis:

All loads aggregated:

Loads and time periods aggregated:

(L2 5 a5 6517 s » 10 m » 15 14 15 2 [ANNSNNSNSNEN o0 o o]

Temporal Aggregation

A =t 1Y
JENY

40



Solution Method

e Dualization approach does not work:
— Traditionally, robust constraints are dualized
— Resulting problem is too large for power systems

e Constraint generation makes sense:

prital <wh 4 Wi Y db <pitat VdeD,ieN, teT
FEN

e However, naive CG also does not work




Solution Method

Valid inequalities for x and specific d’s for ramping,
generating limits, and line flow

Fixing binary decisions and finding cuts by CG with an LP
master

Iteratively improving policy structure (e.g. W; = Wj;)
with approximate warm-start (not solving W; fully)

Exploiting structure of special policy form: e.g. pre-
computing all needed constraints for ramping and
generation limit constraints for W;;-policy.




Computational Study

How good is the proposed algorithm?
— Effectiveness of various algorithmic improvements

How good is the simplified affine policy?
— Compared to the “true” multi-stage robust UC

Why should we use multi-stage formulation?
— Worst case infeasibility of two-stage robust UC
— Managing Ramping capability

How good is affine UC “on average”?
— Rolling-horizon Monte-Carlo simulation
— Average performance in cost, std, reliability




How Good is the Algorithm?

Solution time (s) for three test systems using W ;; policy:

System |[I'=025|1'=05 |1 =1 |1 =2 I'=4
30 bus bs 3s 8s bs 20s (inf)
118 bus 64s 47s 63s 178s
2718 bus 3.6h 3.2h 2.3h 2.0h | 0.4h (inf)

Note: “inf" indicates that the problem is infeasible

MIP optimality gap used for 30, 118, 2718 bus systems: 0.1%, 0.1%, 1%




How Good is the Simplified Affine Policy?

e How good is the simplified affine policy?

l Simplified affine multistage robust UC
t]Y =
pit(d[ ]) =W + Wiy ZjeNd djt
T General affine multistage robust UC
t]\ = t
Pit(d[ ]) = Wi + D=1 ZjENd Witjsdjs
V Fully-adaptive multistage robust UC Pt (d[t])

>
p)

ptimality ga

Real o

=
50
>,
=
=
E
=
O
=
2
=
N

—t+= Two-stage robust UC pit(d)

<€

=t— Lower bound on two-stage robust UC

v




How Good is the Simplified Affine Policy?

Table : Opt. gap under different policy structures, for the 118 bus system.

(ng'} nT?‘ nd? L)

I'=0.5

I'=1

I'=2

I'=4

(10,1,1,0)
(21,1,1,0)
(31,1,1,0)
(54,1,1,0)
(54,4,1,0)
(54,24,1,0)

0.03%
0.03%
0.02%
0.02%
0.02%
0.02%

0.06%
0.05%
0.04%
0.04%
0.03%
0.03%

0.11%
0.11%
0.10%
0.10%
0.10%
0.07%

0.95%
0.77%
0.74%
0.67%
0.52%
0.35%

Table : Opt. gap for the 2718 bus system under the “W;;" policy.

(ng.nr,ng, L)

['=0.25

['=0.5

I'=1

I'=1.5

['=2

(289,1,1,0)
(289,24,1,0)

0.09%
0.07%

0.22%
0.11%

0.42%
0.25%

0.55%
0.35%

1.05%
0.53%




Why Multistage? Worst-Case

* Worst-case (USS) of multistage robust dispatch under two-stage and
Multistage UC solutions for the 2718-bus system.

I'=0.5 I'=1 '=15 =2 =3

Affine multistage UC solutions

Total Cost 9,445,069 9,596,788 9,746,685 9,905,527 10,234,459
Penalty 0 0 0 0 0

Two-stage UC solutions

Total Cost 9,505,651 9,745,889 10,183,433 10,075,403 12,864,710
Penalty 96,313 224952 591,661 1,165,324 2,703,522

Rel Diff 0.64% 1.55% 4.49% 10.80% 25.70%




How Good is Affine UC on Average?

e Average performance over independent demand

Affine multistage robust UC with policy-enforcement robust ED

I

0.25

(0.5 )

1

1.5

2

3

Cost Avg (%)
Cost Std (%)
Penalty Cost Avg ($)
Penalty Freq Avg

9,307,528
113,725
03,552
10.00%

9,319,396
15,970
3497

\_1.47%

0,342,754 9,360,359 9,379,464 9,442 858

12,828
727
0.40%

12,509
61
0.01%

12,363
5
0.00%

12,002
0
0.00%

0.46%

Two-stage robust UC with look-ahead ED

I

0.25

0.5

1

1.5

2

7

Cost Avg ($)
Cost Std ($)
Penalty Cost Avg ($)
Penalty Freq Avg

9,308,100 9,456,599 0,408,732 9,383,560 9,407,290

93,470
80,127
9.93%

195,774
152,637
12.26%

173,884
98,113
7.80%

144,698
66,801
5.11%

162,469
82,864
5.57%

9,362,379

45,584
6,103

\_0.37% /

Deterministic UC with reserve and look-ahead ED 0-95%

Reserve

2.5%

5%

10%

15%

( 20%

N

30%

Cost Avg (5)

0,556,540 0.575.446 0,424,678 0,561,024 |9,408,173

0,411,741

Cost Std (%)
Penalty Cost Avg ($)
Penalty Freq Avg

261,464
254,627
15.93%

288,777
271,672
13.37%

121,122
119,127
14.31%

196,354
248,658
18.16%

92,268
83,038

\10.03% /

69,050
51,907
7.22% ,q




How Good is Affine UC on Average?

* Average performance over wind power and persistent demand

Affine multistage robust UC with policy-enforcement robust ED

r

0.25 (

0.5

1

1.5

2

3

Cost Avg (%)
Cost Std ($)

Penalty Cost Avg ($)

Penalty Freq Avg

10,996,931 9,459,785
3,665,301 2,007,317

18.84%

2,679,299 1,110,032

14.44%

8,502,923
490,457
101,234

. 1.67%

8,581,532 8,646,665 9,415,603

466,999
81,834
0.47%

424,801
27,344
0.18%

458,865
218
0.01%

Two-stage robust UC with look-ahead ED

1.23%

r

0.25 0.5 1 1.5

2 )

3

Cost Avg (8)
Cost Std ($)

10,390,214 11,365,568 8,734,840 8,863,075
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Deterministic UC with reserve and look-ahead ED
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Some Concluding Remarks

e Significant challenges:
— AC Optimal Flow Problem with Discrete Decisions
— Voltage-stability constrained OPF
— Robust UC with AC OPF

— Sensor-driven real-time operation and maintenance
scheduling

e Many more challenging computational
problems!
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GT Workshop On Energy and OR

e http://pwp.gatech.edu/workshop-pes-or/

i : o
Ge?rregcﬁr& Workshop on Electric Energy Systems and Optimization
HOME SPEAKERS HOTELS REGISTER SPONSORS POSTER SESSICN

The Workshop on Electric Energy Systems and Optimization will be held on
Nov ¢ - 10 at Georgia Tech.

Multidisciplinary research is much needed to make fundamental 3
breakthroughs in meeting challenges in electric energy systems. This A
workshop is a first step toward building a platform to bring researchers, ‘
practitioners, and students from electric energy systems and operations /
research, traditionally separated communities, together to have focused \ -mme

discussions on challenges facing the nation’s electric systems.

The workshop hopes to attract graduate and senior undergrad students in \ y
ECE, |E, and related disciplines both from Georgia Tech and nationwide. It L__-

e Nov9-10, 2017 at Georgia Tech
e Please come to GT and continue our discussion!
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Thank you!
Questions?
Andy Sun

andy.sun@isye.gatech.edu
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