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Major Challenges 

• Non-convexity:
• Discrete decisions:
– On/off operational/maintenance decisions
– Network expansion/topology change decisions
• Continuous non-convex constraints:
– Non-convex quadratic constraints
– Differential equation constraints

• Uncertainty:
• Data-driven uncertainty modeling
• Solving huge multistage robust/stochastic 

programming
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Electric Power Systems Problems

• Key Optimization Problems in power system operations 
from System perspective:

– Real-Time Economic Dispatch:
• Hourly bidding and ISO 5, 15 min dispatch

– Day-Ahead Unit Commitment:
• A day prior to operation to determine unit commitment

– Yearly generation/transmission maintenance:
– Long-term generation/transmission expansion:

Real-Time 
Economic 
Dispatch

Day-Ahead 
Unit 

Commitment

Generation 
Transmission 
Maintenance

Generation 
Transmission 

Expansion

15 – 25 years 1 mon – 1 year 24 hours 5 – 15 mins
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Challenge: Renewable Integration

• Renewable Energy Integration in Western Interconnection

– WECC’s Largest generation addition in 2014: 3,400 MW utility-scale solar
– Behind-the-meter solar at least 3,200 MW
– Since 2010, nearly 10,000 MW wind and 8,000 MW solar added
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Challenge: Supply/Demand Uncertainty

• Renewable Integration

Supply Variation: 
Wind/Solar Power Penetration
Behind-the-Meter installation

[Ruiz, Philbrick 10]

Net Load Uncertainty 
Can be Huge!
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Challenge: Unplanned Outages
• Unplanned Generator Outages:

• Unplanned Transmission Outages:

Lack of monitoring
Entails high economic 
Cost and threaten 
system security

Environmental & Weather: 558/1471=38% 

Unknown causes: 425/1471 = 29%!
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Challenge: Dynamic Decision Making

• Uncertainty in Dynamic Decision Making

– Wind/solar rapid changes
– Limited ramping 

0-12

Info: Supply costs, load forecast
Decision: which units to commit
Goal: meet demand w. min cost
Constraints: physical, security

Hour

Day-ahead UC

Info: Unit commit, realized load 
Decision: generation level
Goal: min costs meet demand
Constraints: physical, security

Real-time Dispatch

Uncertainty 
realized

7



Outline

• Part1: Dealing with Non-convexity: 
Optimal Power Flow (OPF)

• Part 2: Dealing with Uncertainty:
Data-driven Robust Unit Commitment (UC)
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Part 1

Optimal Power Flow (OPF): Fast Convexification and 
Cutting Plane Method to deal with non-convexity
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AC Optimal Power Flow
Data:
• Network:

• Load at bus 𝑖𝑖:

• Generator at bus 𝑖𝑖:

• Voltage bounds at bus 𝑖𝑖:

• Network line admittance:

• Line flow limit:
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AC OPF Formulation: Variables and Objective
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AC OPF Formulation: Constraints
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• Local solvers by Newton-Raphson and Interior-Point methods

• Convex relaxations using semidefinite programming (SDP) and Lasserre
hierarchy: (Lavaei and Low, 2012; Madani et. al., 2013; Zhang and Tse, 2012; 
Lavaei et al., 2014, Molzahn et al. 2013, Molzahn and Hiskens, 2014, Chen 
et al. 2015, Madani et al. 2017) 

• Second order cone program (SOCP) relaxation: (Jabr 2006, Hijazi et al., 
2014)

• Approximate LPs with guaranteed bounds for the AC-OPF problem on 
graphs with bounded tree-width (Bienstock and Munoz, 2015)

• Global optimal solutions based on branch-and-bound (Phan, 2012)

Recent Literature on OPF
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AC OPF Reformulation

• Introduce Hermitian matrix 𝑋𝑋 = 𝑒𝑒 + 𝑖𝑖𝑖𝑖 𝑒𝑒 + 𝑖𝑖𝑖𝑖 𝐻𝐻:

• Standard SDP relaxation: Ignore rank constraint
• Our proposal: A new minor reformulation of rank 

constraints and use simpler relaxation than SDP
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• Proposition: For a nonzero Hermitian matrix 𝑋𝑋, 
𝑋𝑋 ≽ 0 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑋𝑋 = 1 if and only if all the 
2 × 2 minors of 𝑋𝑋 are 0 and 𝑋𝑋𝑖𝑖𝑖𝑖 ≥ 0 for all 𝑖𝑖. 

• AC OPF constraints can be equivalently 
reformulated as:

Minor Representation
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• Type 1: 
𝑋𝑋𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖
𝑋𝑋𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖

𝑋𝑋11 𝑋𝑋12
𝑋𝑋21 𝑋𝑋22
𝑋𝑋31 𝑋𝑋32

𝑋𝑋13 𝑋𝑋14 𝑋𝑋15
𝑋𝑋23 𝑋𝑋24 𝑋𝑋25
𝑋𝑋33 𝑋𝑋34 𝑋𝑋35

𝑋𝑋41 𝑋𝑋42
𝑋𝑋51 𝑋𝑋52

𝑋𝑋43 𝑋𝑋44 𝑋𝑋45
𝑋𝑋53 𝑋𝑋54 𝑋𝑋55

First Type of 2 × 2 Submatrices
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• Type 2: 
𝑋𝑋𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖
𝑋𝑋𝑘𝑘𝑖𝑖 𝑋𝑋𝑘𝑘𝑖𝑖

𝑋𝑋11 𝑋𝑋12
𝑋𝑋21 𝑋𝑋22
𝑋𝑋31 𝑋𝑋32

𝑋𝑋13 𝑋𝑋14 𝑋𝑋15
𝑋𝑋23 𝑋𝑋24 𝑋𝑋25
𝑋𝑋33 𝑋𝑋34 𝑋𝑋35

𝑋𝑋41 𝑋𝑋42
𝑋𝑋51 𝑋𝑋52

𝑋𝑋43 𝑋𝑋44 𝑋𝑋45
𝑋𝑋53 𝑋𝑋54 𝑋𝑋55

Second Type of 2 × 2 Submatrices
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• Type 3: 
𝑋𝑋𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑘𝑘
𝑋𝑋𝑙𝑙𝑖𝑖 𝑋𝑋𝑙𝑙𝑘𝑘

𝑋𝑋11 𝑋𝑋12
𝑋𝑋21 𝑋𝑋22
𝑋𝑋31 𝑋𝑋32

𝑋𝑋13 𝑋𝑋14 𝑋𝑋15
𝑋𝑋23 𝑋𝑋24 𝑋𝑋25
𝑋𝑋33 𝑋𝑋34 𝑋𝑋35

𝑋𝑋41 𝑋𝑋42
𝑋𝑋51 𝑋𝑋52

𝑋𝑋43 𝑋𝑋44 𝑋𝑋45
𝑋𝑋53 𝑋𝑋54 𝑋𝑋55

Third Type of 2 × 2 Submatrices
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• Let 
• Type 1: Edge minor. 


𝑋𝑋𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖
𝑋𝑋𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖

= 0

Implies 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖∗ = 0 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖2 + 𝑠𝑠𝑖𝑖𝑖𝑖2 = 0
 This is the boundary of a rotated Lorentz cone in 𝑅𝑅4

– One direction is convex: 𝑐𝑐𝑖𝑖𝑖𝑖2 + 𝑠𝑠𝑖𝑖𝑖𝑖2 ≤ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖

– Other direction is reverse convex:

• 𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖2 + 𝑠𝑠𝑖𝑖𝑖𝑖2 ≥ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑔𝑔 𝑐𝑐𝑖𝑖𝑖𝑖

𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖

• 𝑖𝑖 is convex, 𝑔𝑔 is concave
• Overestimate of 𝑖𝑖 and underestimate of 𝑔𝑔 by hyperplanes

First Type 2 × 2 Minors: Edge minor
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• Type 2: 3-Cycle minor.


𝑋𝑋𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖
𝑋𝑋𝑘𝑘𝑖𝑖 𝑋𝑋𝑘𝑘𝑖𝑖

= 0

 0 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑘𝑘𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑘𝑘𝑖𝑖
= 𝑐𝑐𝑖𝑖𝑖𝑖 𝑐𝑐𝑘𝑘𝑖𝑖 − 𝑖𝑖𝑠𝑠𝑘𝑘𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 𝑐𝑐𝑘𝑘𝑖𝑖 − 𝑖𝑖𝑠𝑠𝑘𝑘𝑖𝑖

= (𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑘𝑘𝑖𝑖) − 𝑖𝑖(𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑘𝑘𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑘𝑘𝑖𝑖 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘𝑖𝑖)
 So we have two bilinear constraints:
 (𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑘𝑘𝑖𝑖) = 0
 𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑘𝑘𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑘𝑘𝑖𝑖 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘𝑖𝑖 = 0

Second Type 2 × 2 Minors: 3-Cycle minor
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• Type 3: 4-Cycle minor.


𝑋𝑋𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑘𝑘
𝑋𝑋𝑙𝑙𝑖𝑖 𝑋𝑋𝑙𝑙𝑘𝑘

= 0

 0 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑙𝑙𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑘𝑘𝑋𝑋𝑙𝑙𝑖𝑖
= (𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑙𝑙𝑘𝑘 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑘𝑘 − 𝑐𝑐𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖𝑘𝑘 + 𝑠𝑠𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑘𝑘)
−𝑖𝑖(𝑠𝑠𝑖𝑖𝑖𝑖𝑐𝑐𝑙𝑙𝑘𝑘 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑘𝑘 − 𝑠𝑠𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖𝑘𝑘 − 𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑘𝑘)

 So we have two bilinear constraints:
 (𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑙𝑙𝑘𝑘 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑘𝑘 − 𝑐𝑐𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖𝑘𝑘 + 𝑠𝑠𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑘𝑘) = 0
 𝑠𝑠𝑖𝑖𝑖𝑖𝑐𝑐𝑙𝑙𝑘𝑘 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑘𝑘 − 𝑠𝑠𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖𝑘𝑘 − 𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑘𝑘 = 0

Third Type 2 × 2 Minors: 4-Cycle minor
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3-, 4-Cycle Minors = Cycle Constraints
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• 3-cycle:

• 4-cycle:

3-Cyle, 4-Cycle, and Larger Cycles

Exactly 3-cycle minor = 0

Exactly 4-cycle minor 
= 0
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• Workhorse: SOCP relaxation for fast computation
• Strengthen SOCP relaxation for key non-convexities:

– Minor constraints: Characterize convex hull and linear outer 
envelopes

– Arctangent envelopes + SDP separation:
• Arctangent envelope: Linear upper/lower approximation
• SDP separation: Lift-and-project 

• Results: 
– IEEE instances (Easy):

up to 3375-bus 

– NESTA (Hard):
up to 3375-bus

Our Strategy for Solving AC-OPF

24



Cumulative Gap Profile
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Part 2

Data-Driven Robust Unit Commitment
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Part 2: Data-Driven Robust UC

• Dynamic Uncertainty Models for Temporal-
Spatial Correlations of Wind/Solar/Demand

• Respecting Physical Causality Improves 
Ramping Capabilities of Power System

• Computational Results:
• Practical computation time 2718-bus
• Near-optimal performance
• Reduced reserve requirement and 

increased reliability level
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• Robust Optimization for unit commitment
• Adaptive two-stage robust SCUC models

– [Jiang et. al. 2012], [Zhao, Zeng 2012], 
– [Bertsimas, Litvinov, Sun, Zhao, Zheng 2013] (joint w. ISO-NE)

• RO for security optimization
– [Street et. al. 2011], [Wang et. al. 2013]        

• Unifying RO with Stochastic UC
– [Wang et. al. 2013]

• New types uncertainty set
– [Guan Wang 2014] [Lorca Sun 2014] [Chen et. al. 2015]

• Robust Optimization for economic dispatch
• AGC control (two-stage: dispatch + AGC)

– [Zheng et. al. 2012]
• Affine policy (dispatch as linear function of total load)

– [Jabr 2013][Warrington2012,2013]

Recent Works on Robust UC and ED
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• In a multi-period problem:
Let      be the uncertainty vector at time 𝑡𝑡
Uncertainty set of      depends on the    
realization of uncertainties before 𝑡𝑡

• For example: a dynamic interval uncertainty set:

• Polyhedral dynamic uncertainty sets:

Dynamic Uncertainty Sets
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• A dynamic uncertainty set for wind speed:

Dynamic Uncertainty Sets for Wind Speed

Seasonal pattern

Residual

Linear dynamics:
Temporal & Spatial
correlation

Uncertainty in 
Estimation with
Budget Constraints
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• Adaptive robust ED:
– Time period 1 is decision to be implemented
– Future periods with dynamic uncertainty sets

Two-Stage Robust ED and Rolling Horizon

𝑡𝑡 = 1: 00

Stage-1 Stage-2

𝑡𝑡 = 1: 05, 1: 10, . .1:30
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• IEEE Test Systems with 14-bus and 118-bus
• 14-bus system: 3 thermal gen, 4 wind farms,   

11 loads, 20 transmission lines

Daily system demand:
132.6MW-319.1MW
Avg: 252.5MW

Experiment Setup
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• Wind farms:
– 4 wind farms, each of 75MW (50 GE 1.5MW)
– Real wind data: 5 min wind speed for a year 
– Exhibit significant temporal/spatial correlations
– Avg wind speeds: 4.8m/s, 5.6m/s, 5.1m/s, 5.5m/s
– Avg total available wind power: 104.2MW

• Equivalent to 34.7% capacity factor
• Or 32.7% of peak load, 20% of thermal generation
• Represent significant level of wind penetration

Experiment Setup
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• Adaptive robust ED v.s. Determ Look-Ahead ED:

– Cost Avg: Rob-ED 7.1% (Γ = 0.5) lower than LA-ED
– Cost StD: Rob-ED 41.2% lower than LA-ED; 

Rob-ED up to 82.0% lower than LA-ED
– Penalty freq: Rob-ED 52.4% lower than LA-ED;

Rob-ED up to 80.1% lower than LA-ED

Robust ED Improves Cost and Reliability
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• Dynamic uncertainty sets  v.s. Static uncert sets

Dynamic U Sets Pareto Dominate

SUS1: No temp
SUS2: No temp/spatial
DUS: w. temp/spatial

Pareto Frontier

A. Lorca, A. Sun Adaptive Robust Optimization with Dynamic Uncertainty Sets for 
Multi-Period Economic Dispatch under Significant Wind, to appear IEEE Trans Power Syst 2015 35



• A simple two-bus two-period example:

• Claim: Two-stage robust UC is feasible
– UC solution: 𝑥𝑥𝐴𝐴𝑡𝑡 , 𝑥𝑥𝐵𝐵𝑡𝑡 = 1,1 for 𝑡𝑡 = 1,2
– Feasible dispatch solution:

• 𝑝𝑝𝐴𝐴1 𝒅𝒅 = 12 + 2
5
𝑑𝑑𝐴𝐴2 − 12.5 , 𝑝𝑝𝐵𝐵1 𝒅𝒅 = 12 − 2

5
𝑑𝑑𝐴𝐴2 − 12.5

• 𝑝𝑝𝐴𝐴2 𝒅𝒅 = 12.5 + 3
5
𝑑𝑑𝐴𝐴2 − 12.5 , 𝑝𝑝𝐵𝐵2 𝒅𝒅 = 12.5 − 3

5
𝑑𝑑𝐴𝐴2 − 12.5

– Satisfy 𝑝𝑝𝐴𝐴𝑡𝑡 𝒅𝒅 + 𝑝𝑝𝐵𝐵𝑡𝑡 𝒅𝒅 = 𝑑𝑑𝐴𝐴𝑡𝑡 + 𝑑𝑑𝐵𝐵𝑡𝑡 , 𝑖𝑖𝐴𝐴𝐵𝐵 𝒅𝒅 ≤ 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ,∀𝒅𝒅 ∈ 𝐷𝐷

Issues with Two-Stage Robust UC

𝐴𝐴 𝐵𝐵

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑝𝑝𝐴𝐴0 = 12, 𝑅𝑅𝐴𝐴 = 1 𝑝𝑝𝐵𝐵0 = 12, 𝑅𝑅𝐵𝐵 = 1

𝑑𝑑𝐴𝐴𝑡𝑡 𝑑𝑑𝐵𝐵𝑡𝑡 Demand uncertainty sets:
𝐷𝐷1 = 12,12 ,
𝐷𝐷2 = 𝑑𝑑𝐴𝐴2,𝑑𝑑𝐵𝐵2 :𝑑𝑑𝐴𝐴2 + 𝑑𝑑𝐵𝐵2 = 25,𝑑𝑑𝑖𝑖2 ∈ 10,15
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• Can we find a policy 𝑝𝑝(⋅) that does not look into 
the future? i.e. 𝒑𝒑1 𝒅𝒅1 ,𝒑𝒑2(𝒅𝒅1,𝒅𝒅2)?
– Because real-time dispatch cannot depend on future

• No feasible non-anticipative policy exists!
– No feasible 𝒑𝒑1 s.t. for any 𝒅𝒅2 ∈ 𝐷𝐷2 there exists 𝒑𝒑2
– If 𝑝𝑝𝐴𝐴1 ∈ [11,12]: 𝑝𝑝𝐴𝐴2 ≤ 13, impossible to satisfy 𝒅𝒅2 = (15,10)
– If 𝑝𝑝𝐴𝐴1 ∈ [12,13]: 𝑝𝑝𝐵𝐵2 ≤ 13, impossible to satisfy 𝒅𝒅2 = (10,15)

• Bottleneck: Ramping constraint

Respecting Physical Causality is Important
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Multistage Robust UC
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• Tractable alternative for 𝑝𝑝 ⋅ :

• Multistage robust UC with affine policy:

Affine Multistage Robust UC
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Simplified Affine Policies

Spatial Aggregation

Temporal Aggregation

40



• Dualization approach does not work:
– Traditionally, robust constraints are dualized
– Resulting problem is too large for power systems

• Constraint generation makes sense:

• However, naïve CG also does not work

Solution Method

41



• Valid inequalities for 𝑥𝑥 and specific 𝑑𝑑’s for ramping, 
generating limits, and line flow 

• Fixing binary decisions and finding cuts by CG with an LP 
master

• Iteratively improving policy structure (e.g. 𝑊𝑊𝑖𝑖 → 𝑊𝑊𝑖𝑖𝑡𝑡) 
with approximate warm-start (not solving 𝑊𝑊𝑖𝑖 fully)

• Exploiting structure of special policy form: e.g. pre-
computing all needed constraints for ramping and 
generation limit constraints for 𝑊𝑊𝑖𝑖𝑡𝑡-policy. 

Solution Method
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• How good is the proposed algorithm?
– Effectiveness of various algorithmic improvements

• How good is the simplified affine policy?
– Compared to the “true” multi-stage robust UC

• Why should we use multi-stage formulation?
– Worst case infeasibility of two-stage robust UC
– Managing Ramping capability

• How good is affine UC “on average”?
– Rolling-horizon Monte-Carlo simulation
– Average performance in cost, std, reliability

Computational Study
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How Good is the Algorithm?

Solution time (s) for three test systems using 𝑾𝑾𝒊𝒊𝒊𝒊 policy:
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How Good is the Simplified Affine Policy?

• How good is the simplified affine policy?
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How Good is the Simplified Affine Policy?
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Why Multistage? Worst-Case

• Worst-case (US$) of multistage robust dispatch under two-stage and 
Multistage UC solutions for the 2718-bus system. 
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How Good is Affine UC on Average?

• Average performance over independent demand

0.46%

0.95%
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How Good is Affine UC on Average?

• Average performance over wind power and persistent demand

1.23%

24.52%
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• Significant challenges:
– AC Optimal Flow Problem with Discrete Decisions
– Voltage-stability constrained OPF
– Robust UC with AC OPF
– Sensor-driven real-time operation and maintenance 

scheduling

• Many more challenging computational 
problems!

Some Concluding Remarks
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• http://pwp.gatech.edu/workshop-pes-or/

• Nov 9 – 10, 2017 at Georgia Tech
• Please come to GT and continue our discussion!

GT Workshop On Energy and OR
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Thank you!
Questions?
Andy Sun

andy.sun@isye.gatech.edu
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