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Motivation

I Problem: Shortage of ramping resources in the real-time
operation of power systems
→ ramping is not appropriately represented and incentivized

I Flexible ramping products (e.g. CAISO and MISO)
I Tenet: Better handling of both variability and uncertainty
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Modeling errors in time
I Load demand is a continuous time random process
I Generators have continuous time inter-temporal constraints

(ramping, on-off time)

Objective
Mapping the variational stochastic problems into tractable
approximations. 5 / 42



Where is ramping first accounted for?

1. In the Unit Commitment (UC) we schedule a piecewise
constant generation trajectory based on a single forecast

2. Trajectory Interpretation: Hourly ramping constraints→
piecewise linear generation trajectory
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Agenda

Information loss→ In the conventional practice, continuity and higher
order stochastic features are being relaxed

I continuous trajectories & derivatives are replaced by samples
& finite differences

I deterministic approximation: single forecast for the net-load
I stochastic approximation: only marginal distributions, Markov

chains, discrete time quantized scenario trees/fan

In this talk we introduce:
I Continuous Time Economic Dispatch (CT-ED), marginal

pricing and approximation via Splines of CT DC OPF
I Continuous Time Unit Commitment: Deterministic (CT-DUC)

and Stochastic Multi-Stage formulations (CT-SMUC)
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Nomenclature for Continuous Time Optimization
OPF and UC variables, Deterministic case

I Generator index g ∈ G: Set of generation units,
I Bus index b ∈ B: Set of buses,
I (l, l ′) ∈ B × B: Set of transmission lines,
I ξb(t) ∈ R+: Net-Load Demand
I Schedule for g ∈ Gb

I xg(t) ∈ R+: Scheduled power
I ẋg(t) ∈ R+ : Ramping decision
I yg(t) ∈ {0, 1}: Commitment decision
I sg(t) switching action from off to on,
I sg(t) switching action from on to off.

I Costs: Cg and startup S
g
, shut-down Sg
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Continuous Time
Economic Dispatch
and Marginal Pricing
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Economic Dispatch in continuous Time

Continuous Time Economic Dispatch:

min
∑

b∈B
∑

g∈Gb

∫ t0+T
t0

Cg(xg , t)dt w.r.t x(t) Objective and decision var.∑
b∈B

(∑
g∈Gb xg(t)− ξb(t)

)
= 0 Balance constraint

Gg ≤ xg(t) ≤ G
g

Production capacity
−Gg ′ ≤ ẋg(t) ≤ G

g ′
Ramping constraint

I Note: Cg(xg, t) is a cost per unit of time (may depend on the
ramp ẋg too, optional)

The DC OPF version simply adds:

−Lll′ ≤
∑

b∈B Db
ll′

(∑
g∈Gb xg(t)− ξb(t)

)
≤ Lll′ Thermal constraints
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Variational formulation of the CT-ED

Lagrangian of the CT-ED:

L =
∑
b∈B

∑
g∈Gb

∫ t0+T

t0
f (g,b)(xg, ẋg, t)dt

f (g,b)(xg, ẋg, t) =Cg(xg, t) + λ(t)
(
ξb(t)
|Gb|

− xg(t)
)

+µg(t)(xg(t)− G
g
) + µg(t)(Gg − ẋg(t))

The variational problem:

min
x(t)
L = min

x(t)

∑
b∈B

∑
g∈Gb

∫ t0+T

t0
f (g,b)(xg, ẋg, t)dt

is a special case of the isoperimetric problem in Physics.
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Optimum solutions and Euler-Lagrange equations

I The optimum trajectories xg
o (t) are solutions of the

Euler-Lagrange partial differential equations:

∂f (g,b)(xg
o, ẋ

g
o, t)

∂xg − d
dt
∂f (g,b)(xg

o, ẋ
g
o, t)

∂ẋg = 0, ∀b ∈ B, g ∈ Gb

plus the remaining KKT conditions...
I Hence, the Lagrange multiplier function, the marginal cost and

the other Lagrange multipliers functions:

λo(t) =
∂Cg(xg

o, t)
∂xg − d

dt
∂Cg(xg

o, t)
∂ẋg︸ ︷︷ ︸

=0

+ µg
o(t)− µg

o
(t)− dγg

o(t)
dt

+
dγg

o
(t)

dt
∀t0 ≤ t ≤ t0 + T , g ∈ G
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Observations

I Due to complementarity slackness if constraints are not tight
µg

o(t) = µg
o
(t) = 0 and/or γg

o(t) = γg
o
(t) = 0.

I For feasibility each time instant t0 ≤ t ≤ t0 + T the always
exist an extra unit to meet demand

I The marginal unit is the unit g∗ for which at time t and so
µg∗

o
(t) = 0 and/or γg∗

o (t) = 0

λo(t) =
∂Cg∗(xg∗

o , t)
∂xg

I Note that since the marginal unit in general will be different at
different times, λo(t) is naturally a discontinuous function
(piece-wise constant if costs are linear in xg(t))
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Marginal Price

I Suppose we increase the entire load trajectory at an arbitrary
bus by a constant ξb(t)→ ξ̃b(t) = ξb(t) + ε without any
change in ramp

I It is not difficult to see that the rate of change of the objective
w.r.t. ε is:

lim
ε→0

L∗(ε)− L(ε)

ε
=

∫ t0+T

t0
λo(t)dt

which in turn implies that λo(t) could be interpreted as a
shadow price per unit of time.
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Approximation of the CT DC-OPF

I Without loss of generality let t0 = 0 and T = 1
I Suppose also that Cg(xg, t) = Cg(xg) = Λgxg + const .
I If the net-load lies approximately in an n + 1 dimensional

signal space, spanned by the linearly independent functions
{b(n)

i (t)}n
i=0 can we approximate the variational solution?

ξb(t) ≈
n∑

i=0

ξb
i bi,n(t) → xg(t) ≈

n∑
i=0

xg
i bi,n(t)

There are uncountable constraints
I Balance: OK if ∀b ∈ B, i = 0, .., n, ξb

i −
∑

g∈Gb xg
i = 0

I Inequalities: Capacity and ramping constraints, flows need
attention→ this goal guides the choice of {b(n)

i (t)}n
i=0
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Bernstein Polynomials
Bernstein polynomials of degree n are defined as

bi,n(t) =

(
n
i

)
t i(1− t)n−iΠ(t), i ∈ [0, n]

Π(t) =

{
1 0 ≤ t ≤ 1
0 else

And the vector of polynomials of degree n is denoted by bn(t).
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Convex Hull Property

I The coefficients of the Bernstein
polynomial expansion define
control points for the corresponding
curves are called Bérzier curves

I A Bérzier curve is always
contained in the convex hull of the
control points

I For a 1D function:

min
i

xi ≤ x(t) ≤ max
i

xi

I The derivative is also a Bérzier
curve of order n − 1 such that

ẋ(t) =
n−1∑
i=0

n(xi+1 − xi)︸ ︷︷ ︸
ẋi

bi(n−1)(t)
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Approximation of DC -OPF
Indicating by x the (n + 1)× |G| matrix of all coefficients:

min
x(t)

∑
g∈G

∫ 1

0
Cg(xg)dt = min

X

∑
g∈G

Λg
n∑

i=0

xg
i

∫ 1

0
bin(t)dt︸ ︷︷ ︸

1
n+1

s.t. Balance ∀b ∈ B, i = 0, .., n, ξb
i −

∑
g∈Gb

xg
i = 0

I Capacity: maxi xg
i ≤ G

g
& mini xg

i ≥ Gg imply
Gg ≤ xg(t) ≤ G

g

I Ramping: Similarly maxi(x
g
i+1 − xg

i ) ≥ G′
g
/n &

mini(x
g
i+1 − xg

i ) ≥ −G′g/n imply −G′g ≤ ẋg(t) ≤ G′
g

I Flow constraints : Analogously, sufficient conditions are:

min
i

(∑
b∈B

Db
ll′

( ∑
g∈Gb

xg
i −ξ

b
i

))
≥ −Lll′ max

i

(∑
b∈B

Db
ll′

( ∑
g∈Gb

xg
i −ξ

b
i

))
≤ Lll′
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Cost and price

I In the approximate solution constraints become tight
1/(n + 1) earlier than in reality

I It forces C1 continuity of generation trajectory→ it imposes
the generators to go smoothly towards their limits
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Continuous Time
Deterministic
and Stochastic Multi-Stage
Unit Commitment
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Deterministic CT UC

I In principle the commitment function yg(t) ∈ {0, 1} could
switch units at any time→ UC then non-linear problem

I State of the art MILP approximation: switching only at the
beginning of hour h:

yg(t) =
H∑

h=1

yg
h Π

(
t − th−1

th − tv−1

)

i.e. one hourly variable yg
h ∈ 0, 1 describes the degrees of

freedom for yg(t) in (th−1, th]

The idea of the CT UC:
I Allow the scheduled trajectories xg(t) within each (th−1, th] to

be a Bérzier curve of the order needed to represent
accurately the Bérzier curve of net-load ξb(t)

I Keep things continuous from one hour to the next
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Polynomial Interpolation of Net-Load

Let (v−, v) = (h − 1, h), (v , v+) = (h, h + 1) and V = {1, . . . ,H}
I In tv− < t ≤ tv the vector of control points:

ξv−,v = [ξ
(0)
v−,v , . . . , ξ

(n−1)
v−,v , ξ

(n)
v−,v ]T

I The continuous time approximation ∀h in th−1 < t ≤ th :

ξv−,v (t) =
n∑

i=0

ξ
(i)
v−,v bin

(
t − tv−
tv − tv−

)
= b(v−,v)

n (t)ξv−,v

with b(v−,v)
n (t) := bn

(
t−tv−
tv−tv−

)
.

I Continuity:

I C0 is equivalent to ξ(n)
v−,v = ξ

(0)
v,v+

I C1 is equivalent to ξ(n)
v−,v − ξ

(n−1)
v−,v = ξ

(1)
v,v+
− ξ(0)

v,v+
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New Convention for Minimum-up/down Constraints

Two state variables og
v and dg

v are introduced to handle minimum-
up: Og

n and minimum-down: Og
f time for each unit g.

Definition: og
v (dg

v ) is the residual time unit g needs to stay on (off)
after time tv , which depends on the state og

v− (dg
v−) and only when

og
v = 0 (dg

v = 0) the unit can be turned off (on).
I the state persists for the next generations as long as the unit

continues to stay on (off), or
I if is switched off (on), for as long as it is off (on) and not

switched on (off) again.

Observations
(1) With these new definitions the on and off constraints can be
expressed on a purely nodal basis in the Stochastic MUC. (2)
Need to add og

v
Og

n
+ dg

v
Og

f
to the cost to relax integrality.
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Decision Variables

In continuous time, decision variables:

(xg(t), ẋg(t), yg(t), sg(t), sg(t), og(t), dg(t))

may vary continually at all time instances t , providing ultimate flexi-
bility to optimal balancing the load.

Assumption: Commitment and therefore start-up, shut-down, minimum-
up/down variables are constant ∀t , tv− < t ≤ tv and the control
point at the end of the interval (tv− , tv ] carry all the information on
the edge (v−, v).
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CT-UC Coefficients Corresponding to Decision Variables

The the polynomial coefficients for continuous-time generation and
ramping1, commitment, start-up, shut-down, minimum-up/down tra-
jectories, for the interval (v−, v):

xg
v−,v = [xg(0)

v−,v , x
g(1)
v−,v , x

g(2)
v−,v . . . , x

g(n−1)
v−,v , xg(n)

v−,v ]T

ẋg
v−,v = [ẋg(0)

v−,v , ẋ
g(1)
v−,v , ẋ

g(2)
v−,v . . . , ẋ

g(n−1)
v−,v , ẋg(n)

v−,v ]T

yg
v−,v = yg(n)

v−,v = yg
v

sg
v−,v = sg(n)

v−,v = sg
v

sg
v−,v = sg(n)

v−,v = sg
v

og
v−,v = og(n)

v−,v = og
v

dg
v−,v = dg(n)

v−,v = dg
v

1Elements of vector ẋg
v−,v can be expressed as linear combination of elements

of xg
v−,v .
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Decision Variables ctd.
I Continuous-time generation:

xg
v−,v (t) = b(v−,v)

n (t)xg
v−,v tv− ≤ t ≤ tv

I Continuous-time ramping:

ẋg
v−,v (t) = b(v−,v)

n−1 (t)

ẋg
v−,v︷ ︸︸ ︷

Mxg
v−,v tv− < t ≤ tv

where the matrix M changes basis from dbn(t)/dt to bn−1(t)
I Continuous-time commitment (similar for switch & on off):

yg
v−,v (t) = yg

v Π

(
t − tv−
tv − tv−

)
tv− < t ≤ tv

I Continuity conditions:
I C0 is equivalent to xg(n)

v−,v = xg(0)
v,v+

I C1 is equivalent to xg(n)
v−,v − xg(n−1)

v−,v = xg(1)
v,v+
− xg(0)

v,v+

I (Smooth switch): For generation schedule the last two
variables of the expansion (xg(n−1)

v−,v , xg(n)
v−,v ) are zero or not

depending on the next hour commitment yg
v+
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Constraints: Generation and Ramping Limits

Convexhull property: The entire generation and ramping trajecto-
ries for edge (v−, v) is contained in the convexhull of their control
point xg

v−,v and ẋg
v−,v respectively.

Therefore, bounds on continuous-time generation and ramping tra-
jectories for interval tv− ≤ t ≤ tv can be expressed:

min{xg
v−,v} ≤ min

tv−<t≤tv
xg

v−,v (t)

max
tv−<t≤tv

xg
v−,v (t) ≤max{xg

v−,v}

min{ẋg
v−,v} ≤ min

tv−<t≤tv
ẋg

v−,v (t)

max
tv−<t≤tv

ẋg
v−,v (t) ≤max{ẋg

v−,v}
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Balance and Transmission Capacity

I The continuous-time balance between generation works like
in the CT DC-OPF and load is guarantied and expressed by
balancing the polynomial coefficients of load and generation:∑

b∈B

( ∑
g∈Gb

xg
v−,v − ξb

v−,v

)
= 0

I For the flow constraints we need to use the convex hull
property again as we did for CT DC-OPF . . .

I Start-up, Shut-down, and Minimum-up/down Constraints are
analogous to conventional UC
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Objective Function

I Note that the generation costs terms are linear:

Cg(xg(t)) = cg
1vxg(t) + cg

0vyg
v (t)

Sg(sg
v (t), sg

v (t))S
gsg

v (t)+Sgsg
v (t)

I Also the following holds:

∀i = 0, . . . , n
∫ tv

tv−

bin(
t − tv−
tv − tv−

)dt =
tv − tv−
n + 1

I Thus, substituting the variables and nodal notation:∑
v∈V

∑
g∈G

∫ tv

tv−

(
cg

1v b(v−,v)
n (t)xg

v−,v +cg
0 yg

v (t)+S
g
sg

v (t)+Sgsg
v (t)+

og
v (t)
Og

n
+

dg
v (t)
Og

f

)
dt

=
∑
v∈V

(tv − tv−)
∑
g∈G

cg
1v

n + 1

( n∑
i=0

xg(i)
v−,v

)
+cg

0 yg
v +S

g
sg

v +Sgsg
v +

og
v

Og
n
+

dg
v

Og
f
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CT Deterministic Unit Commitment

min
∑

v∈V
∑

g∈G
cg
1v

n+1

(∑n
i=0 xg(i)

v−,v

)
+cg

0 yg
v +Sg sg

v +Sg sg
v +

og
v

Og
n

+
dg
v

Og
f

Cost (tv − tv− ) = const.

w.r.t (y,o,d, x, s, s) Decision variables
y ∈ B|G|×|V|, o,d, x ∈ R|G|×|V|+ , s, s ∈ [0, 1]|G|×|V| Bounds

yg
v − yg

v− ≤ sg
v Start up constraints

sg
v = yg

v− − yg
v + sg

v Shut down constraint
og

v ≥ sg
v (O

g
n − 1) Minimum-up time

max{0, og
v− − yg

v−} ≤ og
v ≤ og

v− + sg
v (O

g
n − 1)

og
v− − og

v ≤ yg
v ≤ 1

dg
v ≥ sg

v (O
g
f − 1) Minimum-down time

max{0, dg
v− − 1 + yg

v } ≤ dg
v ≤ dg

v− + sg
v (O

g
f − 1)

0 ≤ yg
v ≤ 1− dg

v + dg
v−

like in CT DC-OPF . . . Balance constraint
like in CT DC-OPF . . . Flow constraints
max( max

0≤i≤n−2
xg(i)

v,v+ , x
g(n−1)
v−,v , xg(n)

v−,v ) ≤ G
g
yg

v+︸ ︷︷ ︸
Smooth switch

. . . Production limits

Similar . . . Ramping constraint
xg(n)

v−,v = xg(0)
v,v+ C0 Continuity

xg(n)
v−,v − xg(n−1)

v−,v = xg(1)
v,v+ − xg(0)

v,v+ C1 Continuity
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Simulation Results: IEEE-RTS + CAISO Load

I 32 units of the IEEE-RTS and
load data from the CAISO
used here.

I The five-minute net-load
forecast data of CAISO for
Feb. 2, 2015 (scaled down to
peak load of 2850MW)

I Both the day-ahead (DA) and
real-time (RT) operations are
simulated.

I Hourly day-ahead load
forecast error standard
deviation %1 of the load at the
time.
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Reduced Operation Cost and Ramping Scarcity
I Case 1: Current UC Model
I Case 2: The Proposed UC Model

Case DA Operation 
Cost ($) 

RT Operation 
Cost ($) 

Total DA and RT 
Operation Cost ($) 

RT Ramping 
Scarcity Events 

Case 1 471,130.7 16,882.9 488,013.6 27 
Case 2 476,226.4 6,231.3 482,457.7 0 
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Stochastic Multi-Stage CT UC - Sampling

I The net load is a continuous random process Ξb(t)
I The process is continuous in time and sample space, it is

intractable
I We are seeking to find a discrete time replacement, such that:

lim
n→+∞

∫ 1

0
E
[(

Ξb(t)−
n∑

i=0

Ξb(i)bin(t)︸ ︷︷ ︸
Ξ̂b(t)

)2]
dt = 0

I Using a finite finite n each time segment of the process is
mapped onto n dimensional random vector of coefficients
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Polynomial Interpolation of Stochastic Load

I We can assume that in tv− < t ≤ tv each realization ξb(t) of
Ξb(t) can be mapped onto a polynomial approximation

I Given the corresponding sample path (scenario) vector of
control points:

ξv−,v = [ξ
(0)
v−,v , . . . , ξ

(n−1)
v−,v , ξ

(n)
v−,v ]T

The continuous time approximation of load scenarios is obtained:

ξ̂v−,v (t) = b(v−,v)
n (t)ξv−,v , tv− ≤ t < tv

the approximate process of all such scenarios Ξ̂b(t) is actually amenable
to the Multi-Stage formulation since we can describe a filtration
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Edge variables ξv−,v and Filtration structure

Non-anticipativity is obtained describing the stochastic process causally.
This is called Filtration

Definition: Filtration F, is an increasing sequence of σ-algebras
Ft , t ≥ 0 of subsets of Ω.

In continuous time, filtrations have additional structure:
I Right-continuity: if for each t ≥ 0,

Ft = Ft+ =
⋂
ε>0

Ft+ε

I specifically, for Ξ̂b(t) the filtration

Ftv− =
⋂

tv−<t≤tv

Ft
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Scenario Tree
The scenario tree T = {V, E ,P; ξ} is the basic structure for multi-
stage stochastic optimization.

I is a directed graph
I V set of all nodes v ,

I each node v ∈ V has a
corresponding value ξv ∈ ξ,

I the present: ξ0 is deterministic
and represent the root of the
tree

I E set of all edges (v−, v),
I P is the probability law

I associates to edge (v−, v) the conditional probability pv−,v of
outcome ξv given unique path ξ0:v−

I recursive rule: πv = pv−,vπv− , π0 = 1.

While normally the stochastic variables ξv are nodal we have each
edge associated with ξv−,v ,
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CT Stochastic Multi-Stage UC formulation

The CT-SMUC problem is, of course, tractable only if the T =
{V, E ,P; ξ} is a finite (quantized) approximation of the true filtration

I Constraints: (v−, v) ∈ E are edges of our scenario tree
instead of indexes of consecutive hours (v−, v) = (h − 1, h).
With this difference the CT SMUC constraints are written
exactly in the same way as in the CT- DUC (..no extra work)

I Objective: The objective of the CT-SMUC is different since it is
the expected cost over all scenarios:

E[Cost] =
∑
v∈V

πv

∑
g∈G

cg
1v

n + 1

( n∑
i=0

xg(i)
v−,v

)
+cg

0 yg
v +S

g
sg

v +Sgsg
v +

og
v

Og
n

+
dg

v

Og
f
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C1 Continuity of Load Scenarios on the Tree

Sufficient Condition: In order to maintain the C1 continuity of load
scenarios on the tree, it is sufficient to enforce the condition that
at each segment of the scenario tree, the continuous load curve is
tangent to the coefficients’ polygon at the endpoints:
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Discrete-time : Inaccuracies & Problem Size

Figure: (left) Discrete-time hourly summer Load Trajectories from PJM. (right)
Discrete-time hourly Load Scenario Tree
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Continuous Time: Smoothness & Tractability
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Figure: (left) Hourly summer load trajectories from PJM,(right) Corresponding
scenario tree (with binary structure [2 2 2]) in continuous time with C1-Continuity
imposed at the nodes. The entire horizon is split in 3 stages of 8 hours each.
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Conclusion

What we did
I We started casting the classic ED problem in continuous time

to understand the meaning of the variational problem
I The rest of the talk is essentially building on the generalized

notion of sampling from sampling trajectories to sampling
random processes to provide tractable numerical solutions

I With this first step we show that it is possible to adopt the
machinery of stochastic optimization to variational problems

What we left out
I We did not touch upon non-linearities (e.g. AC power flow)
I We are exploring the possibility of including dynamic

constraints (ODEs), e.g. generator inertia
I We did not quantify the error due to finite n and quantization in

the SMUC
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Questions ?

{Anna.Scaglione@asu.edu}
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