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Electric Power System
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North American Electric Power Grid
US is 18% of world consumption as of 2015.

D. Wollman, “Accelerating Standards and Measurements for the Smart Grid,” National Institute of Standards and Technology (NIST), U.S. Department of Commerce.
[Online] https://www.superlectures.com/icassp2011/downloadFile.php?id=322&type=slides&filename=accelerating-standards-and-measurements-for-the-smart-grid

• 3200 electric utility 
companies

• 17,000 power plants
• 800 GW peak demand
• 165,000 miles of high-

voltage lines
• 140 million meters
• $ 1 trillion in assets

5



Electric Power System

Generation, transmission, and distribution model

Transmission 
System
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Energy Management System (EMS)
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Cyber-attacks on the Grid
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Cyber-attacks on the Grid

• Electric power system is vulnerable to cyber attacks
• Stuxnet malware attacks SCADA systems in Germany in 2010
• Ukraine power grid attacks in 2015

• DHS recorded 161 cyber attacks on the energy sector in 2013, 
compared to 31 in 2011
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Ukraine Cyber Attack

• Cyber attack against Ukraine power grid 
illuminated the urgency of prognosis of cyber 
attacks on open-source EMS platform

Antiy Labs, “Comprehensive analysis report on Ukraine power system attacks,” March 2016. [Online]. Available: 
http://www.antiy.net/p/comprehensive-analysis-report-on-ukraine-power-system-attacks/ 13



Motivation

• What is the motive for attacking the electric power system?
• Financial, social, political

• Financial damage akin to credit card theft can be achieved by
manipulating electricity markets
• Unclear if sophisticated cyber-attacks on the electric grid is required

• Attacks need to create significant change in production and
flow of electrical power to cause large scale damage

• Can cascading outages and failures be achieved by
intelligent attacks on the cyber-infrastructure of electric power
systems?
• Physical attacks on the grid not considered
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Approach
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Two-Pronged Approach

Theoretical Work Simulation Platform

IMPLEMENT

VERIFY

• Analyze potential 
attacks

• Characterize system 
vulnerabilities

• Develop 
countermeasure 
algorithms

• Java-based, high-
fidelity EMS (Energy 
Management 
System) simulation

• Simulate attacks 
and system 
response on large 
scale systems

Project jointly funded by NSF and DHS, 
as well as PSERC (S.72)
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False Data Injection (FDI) Attack 

• Knowing system configuration, attacker can inject malicious data
(measurements) without detection by existing techniques for bad
data detection

• Requires attacker to have access to remote terminal units (RTUs)
or a control center

• Replace actual data packets with carefully constructed malicious
data packets and impersonate a valid data source
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System and Attack Model

SCADA

Generation 
DispatchPhysical System

Create false 
data

Data Processing by Attacker

Cyber attack

Optimal 
Power Flow

State 
Estimator

Load 
Estimator
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State of Art
• Liu et al. introduce FDI attacks on DC state estimation (SE) and

demonstrate that FDI attacks cannot be detected by bad data
detector [1]

• Hug and Giampapa demonstrate that FDI attacks on AC SE
requires both system topology and state knowledge [2]

• Liang et al. demonstrate that FDI attacks can lead to overflow in
physical system which cannot be detected in cyber layer [3]

• Yuan et al. introduce a two-stage optimization problem to determine
the most damaging FDI attacks that can maximize optimization
costs [4]

[1]. Y. Liu, P. Ning, and M. K. Reiter, False data injection attacks against state estimation in electric power grids," in Proceedings of the 16th ACM Conference on Computer and 
Communications Security, CCS '09, (Chicago, Illinois, USA), pp. 21-32, 2009. 
[2]. G. Hug and J. A. Giampapa, Vulnerability assessment of AC state estimation with respect to false data injection cyber-attacks," IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 
1362-1370, 2012.
[3]. J. Liang, O. Kosut, and L. Sankar, Cyber-attacks on ac state estimation: Unobservability and physical consequences," in IEEE PES General Meeting, (Washington, DC), July 2014.
[4]. Y. Yuan, Z. Li, and K. Ren, “Modeling load redistribution attacks in power systems,” Smart Grid, IEEE Transactions on, vol. 2, no. 2, pp. 382–390, June 2011.
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Worst-case Line Overflow FDI Attacks

Joint work with Jingwen Liang and Oliver Kosut
J. Liang, L. Sankar, and O. Kosut, “Vulnerability analysis and consequences of false data injection attack 
on power system state estimation,” IEEE Transactions on Power Systems, vol. PP, no. 99, pp. 1–9, 2016.

SCADA

Generation 
Dispatch

Optimal 
Power Flow

State 
Estimator

Load 
Estimation

Data

ControlLoad Dispatch

Load
DispatchData

Load Dispatch
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Worst-case Line Overflow Attacks 

• The knowledge (K1) and capability (C1) of the attacker:
i. The topology of the entire power system 𝒢
ii. The cost, capacity, and operational status of generators in 𝒢
iii. The historical load data in 𝒢
Access and modify measurements inside a small area 𝒮, 𝒮 ⊆ 𝒢

K1

C1

• Attack implementation via sub-graph
The attacker replaces several measurements inside 𝒮 with counterfeits:

26



• Pick a target line
• Change measurements 

to maximize the power 
flow on target line after 
re-dispatch

• With limited attack size
• With limited load shift

How to find such an attack?

27
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Optimization for Worst-case Attacks
First Level: Attacker 

Objective:  maximize the physical power 
flow on target line 

Load shift bounds (of all buses) Subject to

Limit attack sub-graph size:
(Number of states that can be attacked) 

Second Level: System response under attack via DC OPF

Objective: minimize total generation cost 

Subject to Power balance

Thermal limit (of all lines)

Generation limit (of all generators)

O
ptim

al generation &
 state

Attack vector
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One level mixed-integer linear program (MILP)
Objective:  maximize the physical power 

flow on target line 

Load shift bounds (of all buses) Subject to

Limit attack sub-graph size:
(Number of states that can be attacked) 

Karush-Kuhn-Tucker (KKT) conditions of 
the second level DCOPF problem

𝑐 , ≤ 𝑁, 𝑐 ≤ 𝑠,−𝑐 ≤ 𝑠,2𝑠
�

�

≤ 𝑁4−−→ 𝑐 4 ≤ 𝑁, →
Relaxed
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One level mixed-integer linear program (MILP)
Objective:  maximize the physical power 

flow on target line 

Load shift bounds (of all buses) Subject to

Limit attack sub-graph size:
(Number of states that can be attacked) 

Karush-Kuhn-Tucker (KKT) conditions of 
the second level DCOPF problem

Complementary slackness condition for  𝑥 ≤ 𝑥789, dual variable  𝛼

𝛼 𝑥 − 𝑥789 = 𝟎 → <
𝛼 ≤ 𝑀𝛿?

𝑥789 − 𝑥 ≤ 𝑀(1 − 𝛿?)
𝛿? ∈ {0,1}
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Numerical Results

• Test on IEEE 24-bus RTS system

l1-norm constraint (rad)

L
in

e 
flo

w
 (%

)
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Java-based High-fidelity EMS 
Simulation Platform

Joint work with IncSys and Powerdata
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Test System - Cascadia System

§ 179 buses, 121 lines, 125 transformers, 37 generators and 
72 loads

§ Synthetic model of the power grid of Washington state 
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FDI Attack

§ Inject false measurements 
in SCADA
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Discussion

• Typically, the attacker is assumed to have complete knowledge of
the system

• What if the attacker’s information is limited to a sub-network?
• We introduce a class of limited information FDI attacks

• FDI attack model: bi-level optimization problem that is then 
converted to single-level mixed integer linear programming (MILP)

• Such a modification introduces a large number of binary variables
• Problem is intractable for large power systems
• Can we evaluate the vulnerability of large-scale system to FDI 

attacks?
• We introduce scalable optimization methods to address this 

problem
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FDI Attacks with Limited External 
Network Information 

J. Zhang, Z. Chu, L. Sankar and O. Kosut, "False data injection attacks on power system state estimation with limited information," 2016 
IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp. 1-5.
J. Zhang, Z. Chu, L. Sankar and O. Kosut, "Can attackers with limited information exploit historical data to mount successful false data 
injection attacks on power systems?" IEEE Transactions on Power Systems, under review. [Online] https://arxiv.org/abs/1703.07500 60
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Limited Information

The knowledge (K2) and capabilities 
(C2) of the attacker:           

Perfect knowledge inside a subnetwork ℒ:
i. the topology 
ii. the cost, capacity, and status of generators
iii. the historical load data
Knowledge outside ℒ (possibly inaccurate): 
i. the power transfer distribution factor (PTDF) of 𝒢
ii. status, capacity and cost of only marginal 

generators  

Access and modify measurements inside a 
small area 𝒮, 𝒮 ⊆ ℒ

K2(a)

K2(b)

C2
𝓔 = 𝓖/𝓛

EMG: external marginal generators

61



Optimization for Worst-case Attacks

First Level: Attacker

 Objective:  maximize the physical power flow on target line 

Load shift bounds (of buses in ℒ) Subject to

Limit on the attack sub-graph size in ℒ:
(Number of states that can be attacked)

Second Level: System response under attack via modified DC OPF

  Objective: minimize total generation cost of generators in ℒ	and 
                    external marginal generators 

Subject to Modified Power Balance (of buses in ℒ)

Thermal limit (of lines in ℒ)

Generation limit (of generators in ℒ	and 
estimated external marginal generators)

O
ptim

al generation &
 state

Attack vector
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Modifications due to limited information:
• Attack vector is limited only inside ℒ

Limit on the attack sub-graph size:
(Number of states that can be attacked)
• Only states inside ℒ	can be changed
• States on boundary buses remain unchanged 
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Modifications due to limited information:
• Power balance constraints in ℒ is modified as 

• Power balance of internal buses in ℒ remain unchanged
• Power balance of boundary buses in ℒ:	
        Generation – Σ Power flow in ℒ – Σ Injection from ℰ = Load
       Estimated PTDF and external marginal generation are utilized 
       to calculate injection from ℰ

65
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Discussion

• Compared to perfect information attacks, limited
information attack optimization may only lead to sub-
optimal attack vector

• The estimated consequences may be inaccurate due to
• Congested lines in ℰ
• Wrong external marginal generators (EMG)
• Wrong PTDF

• However, such limited inaccurate attacks can still cause
damage to a congested system
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Test system: IEEE 24-bus RTS
• Perfect information attacks

(Global case)

• Limited information attacks:
• External information is perfect

(Perfect local case)
• Inaccurate external information

– Case 1: Lack of knowledge of
congested lines in ℰ

– Case 2: Wrong external marginal 
generators (EMG)

– Case 3: Wrong PTDF
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𝓔 = 𝓖/𝓛
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Illustration of Results
Global case vs. Perfect local case

Target line 28
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Perfect information vs. inaccurate external 
information 

Case 1: Lack of knowledge of congested lines in ℰ
Case 2: Wrong external marginal generators (EMG)
Case 3: Wrong PTDF

Case Actual Physical
PF

Computed
Physical PF

Perfect Case 105.64% 105.64%
Case 1 104.60% 105.64%
Case 2 104.82% 105.95%
Case 3 104.95% 105.90%
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No External Network Information
• Designing FDI attacks with limited external network 

information still requires partial information in external 
network

• What if the attacker has no information in external 
network?

• Can attacker take advantage of the historical data to 
overcome limited information?  
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The knowledge (K3) and capabilities (C3) of the 
attacker:

Perfect knowledge inside a subnetwork ℒ:
i. the topology 
ii. the historical data of generators including cost, capacity, and 

status 
iii. the historical load data
iv. the locational marginal price (LMP)

Access and modify measurements inside a small area 𝒮, 𝒮 ⊆ ℒ

K3

C3
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Reformulate System Power Flow with 
Localized Information

For lines in ℒ:

− K is the PTDF matrix of the 
entire network
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Boundary Bus

Unknown to 
attacker!!
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• 𝑃 is the vector of real power flow
• 𝑃H is the vector of real generation 

output
• 𝑃I is the vector of real power load
• 𝐺 is the generator-to-bus 

connectivity matrix



• Introduce pseudo-boundary injections

− (K) represents vector or matrix computed only within the 
attack sub-network ℒ
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Reformulate System Power Flow with 
Localized Information
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Multiple Linear Regression Model
• Pseudo-boundary injections depends on both power injections in 

ℒ and ℰ

74
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Multiple Linear Regression Model
• Pseudo-boundary injections depends on both power injections in 

ℒ and ℰ
• The attacker cannot accurately estimate the system re-dispatch 

after attack with real-time information in ℒ. 
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Multiple Linear Regression Model
• Pseudo-boundary injections depends on both power injections in 

ℒ and ℰ
• The attacker cannot accurately estimate the system re-dispatch 

after attack with real-time information in ℒ. 
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Multiple Linear Regression Model
• Pseudo-boundary injections depends on both power injections in 

ℒ and ℰ
• The attacker cannot accurately estimate the system re-dispatch 

after attack with real-time information in ℒ. 
• Attacker can learn a functional relationship between pseudo-

boundary injections and power injections inside ℒ	 from historical 
data
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Pseudo Boundary InjectionPseudo Boundary Injection

Multiple Linear Regression Model
• Pseudo-boundary injections depends on both power injections in 

ℒ and ℰ
• The attacker cannot accurately estimate the system re-dispatch 

after attack with real-time information in ℒ. 
• Attacker can learn a functional relationship between pseudo-

boundary injections and power injections inside ℒ	 from historical 
data

• The attacker can then predict the pseudo-boundary injections as  

• 𝐹O is the linear coefficient matrix
• 𝑓Q, is the constant

? ?

?
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Optimization for worst-case attacks

First Level: Attacker

Objective:  maximize the physical power flow on target line 

Load shift bounds (of buses in L) Subject to

Limit on the attack sub-graph size:
(Number of states that can be attacked)

Only states inside L	can be changed
States on boundary buses remain unchanged 

Second Level: System response under attack via modified DC OPF

Objective: minimize total generation cost of generators in L	and cost of 
pseudo-boundary injections

Subject to

Thermal limit (of lines in L)

Generation limit (of generators in L	and estimated external 
marginal generators)

O
ptim

al generation &
 state

Attack vector

Power balance inside L:
Total generation – Total pseudo-boundary injections = Total loads

Equivalent constraints of pseudo-boundary injections
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Historical Data Analysis

• Scenario 1 - Constant Loads in 𝓔:
In each instance of data: 
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Historical Data Analysis

• Scenario 1 - Constant Loads in 𝓔:
In each instance of data: 

• loads in ℰ remain unchanged 
• loads in ℒ varies as a percent p

of the base load, where p is 
independent 𝒩(0; 10%). 
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Historical Data Analysis

• Scenario 1 - Constant Loads in 𝓔:
In each instance of data: 

• loads in ℰ remain unchanged 
• loads in ℒ varies as a percent p

of the base load, where p is 
independent 𝒩(0; 10%). 

• Scenario 2 - Varying Loads in the 
whole network 𝓖:
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Historical Data Analysis

• Scenario 1 - Constant Loads in 𝓔:
In each instance of data: 
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of the base load, where p is 
independent 𝒩(0; 10%). 

• Scenario 2 - Varying Loads in the 
whole network 𝓖:
In each instance of data, both loads in ℒ
and	ℰ varies as a percent p of the base 
load, where p is independent 𝒩(0; 
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Historical Data Analysis

• Scenario 1 - Constant Loads in 𝓔:
In each instance of data: 

• loads in ℰ remain unchanged 
• loads in ℒ varies as a percent p

of the base load, where p is 
independent 𝒩(0; 10%). 

• Scenario 2 - Varying Loads in the 
whole network 𝓖:
In each instance of data, both loads in ℒ
and	ℰ varies as a percent p of the base 
load, where p is independent 𝒩(0; 
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IEEE 24-bus System
Scenario 1: Constant Loads in 𝓔	
Target line 28
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𝒍𝟎-norm Constraint 
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𝒍𝟏-norm constraint

IEEE 24-bus System
Scenario 2: Varying Loads in the whole network 𝓖
Target line 28

𝒍𝟎-norm Constraint 
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𝒍𝟏-norm constraint

Scenario 1: Constant Loads in 𝓔	
Target line 5

IEEE 118-bus System
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IEEE 118-bus System
Scenario 2: Varying Loads in the whole network 𝓖
Target line 28



FDI Attacks via Scalable Optimization

Joint work with Zhigang Chu, Jiazi Zhang, and Oliver Kosut
Z. Chu, J. Zhang, O. Kosut, and L. Sankar, "Evaluating Power System Vulnerability to False Data Injection Attacks via Scalable 
Optimization," 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, 2016, pp. 1-6.
Z. Chu, J. Zhang, O. Kosut, and L. Sankar, “Vulnerability Assessment of Large-scale Power Systems to False Data Injection 
Attacks," IEEE Transaction on Power systems, under review. [Online] https://arxiv.org/abs/1705.04218

Still vulnerable? 
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Attack Optimization Problem on
Large-scale Power Systems

• The number of binary variables increases with 
the size of the network
• Large number of transmission lines and generators
• Hard to solve the optimization problem due to 

numerical challenges
• Four computationally efficient algorithms
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First Level: Attacker 
Objective:  maximize the physical power 

flow on target line 

Load shift bounds (of all buses) Subject to

Limit attack sub-graph size:
(Number of states that can be attacked) 

Second Level: System response under attack via DC OPF

Objective: minimize total generation cost 

Subject to Power balance

Generation limit (of all generators)

Thermal limit (of critical lines)

O
ptim

al generation dispatch

Attack vector c

First Level: Attacker 
Objective:  maximize the physical power 

flow on target line 

Load shift bounds (of all buses) Subject to

Limit attack sub-graph size:
(Number of states that can be attacked) 

Second Level: System response under attack via DC OPF

Objective: minimize total generation cost 

Subject to Power balance

Thermal limit (of all lines)

Generation limit (of all generators)

O
ptim

al generation dispatch

Attack vector c

Algorithm1: Row Generation
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First Level: Attacker 
Objective:  maximize the physical power 

flow on target line 
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Limit attack sub-graph size:
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Objective: minimize total generation cost 
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Generation limit (of all generators)
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First Level: Attacker 
Objective:  maximize the physical power 

flow on target line 

Load shift bounds (of all buses) Subject to

Limit attack sub-graph size:
(Number of states that can be attacked) 

Second Level: System response under attack via DC OPF

Objective: minimize total generation cost 

Subject to Power balance

Generation limit (of marginal generators)

Thermal limit (of critical lines)

O
ptim

al generation dispatch

Attack vector c

Algorithm2: Row & Column Generation



Obtain upper bound = Objective + Rating

Obtain lower bound = Resulting physical power flow

Objective:  maximize the difference between physical 
and cyber power flow on target line 

Load shift bounds (of all buses) Subject to

Limit attack sub-graph size:
(Number of states that can be attacked) 

Attack 
Vector

Step 2: Re-run DCOPF with attack vector

Step 1: Solve the following optimization problem

Algorithm 3: Cyber-physical Difference 
Maximization
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• Iteratively solve the master problem and single level 
slave problem until convergence

• Due to the non-convexity of the original bi-level linear 
program, the solution of MBD, is a lower bound.

Algorithm 4: Modified Benders’ 
Decomposition
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Original bi-
level

optimization

Master 
problem

Bi-level slave 
problem

Decompose
Master 

problem

Single level 
slave problem

Rewrite

Decision Cuts



Ongoing Work
• Data-driven machine learning based attack detection
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Ongoing Work
• Data-driven machine learning based attack detection

• Vulnerability analysis of PMU data
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Ongoing Work
• Data-driven machine learning based attack detection

• Vulnerability analysis of PMU data

• Attack detection with PMUs
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Questions?

Lalitha Sankar
(lsankar@asu.edu)
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