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« Renewables and Storage
« Why would we use approximate methods?
e Introduction to SDDP
« Sample Results and Comparisons
 Conclusions and Future Work



Renewable Energy Policy Globally
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Figure: Countries with renewable energy policies by type, 2016



Global Trend in Renewable Energy Policies
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Wind Power Projections versus Real Market
Developments
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Storage

Storage Is known to be an enabling technology
for high penetration of renewables

Economics have not historically been viable, but
iImproving!

Significant advancements have focused on
vehicle electrification

The use of storage will support global and local
efforts toward a sustainable energy system
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Levelized Cost of Storage (in decline)
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Data compiled from Lazard's Levelized Cost Of Storage Analysis, Versions 1.0 and 2.0
https://www.lazard.com/media/2391/lazards-levelized-cost-of-storage-analysis-10.pdf
https://www.lazard.com/media/438042/lazard-levelized-cost-of-storage-v20.pdf
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US Energy Storage Projects 2017
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“A main challenge for energy storage is the ability to seamlessly
Integrate with existing systems, leading to its ubiquitous deployment.”

(US DOE Grid Energy Storage Report (2013))



Incorporating Storage in Operational
Decisions

The object of this project is to develop methods
that incorporate storage into dispatch decisions, in
an accurate, effective and scalable manner
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The Power Network Decision Problem

Inputs, forecasts:

e Load,

« conventional generation,

* renewable/climate forecasts

First stage decision:
Unit commitment

A

!

Update of
Information/forecasts

!

Second stage decision:

Dispatch/Recourse
decisions
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ED with Storage and Wind Integration
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Static constraint Dynamic constraints
Power balance at all times  Ramping constraints
Transmission constraints Storage dynamics

Inter-temporal dynamic decisions and constraints even

more important in the presence of storage
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Wind Uncertainty

BPA Balancing Authority Load & Total Wind, Hydro, and Thermal Generation, Last 7 ﬂa
07Jan2014 - 14Jan2014 (last updated 13Jan2014 D8:36:45)
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Wind Uncertainty

BP4 Balancing Authority Load & Total Wind, Hydro, and Thermal Generation, Last 7 days
07]Jan2014 - 14Jan2014 (last updated 13Jan2014 08:36:45)
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Spatial correlation between wind sites
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Representing Wind Uncertainty

Wind

» Uncertainty increases over horizon

> Correlations are non-trivial

» Computational burden can be high

t=1t=2t=3t=4
Example of a scenario tree
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Mathematical Representation

min [E

T
th (°)}

Subject to, for all nodes, and all time periods

b (pg, dy, w) =0 Power balance equations
OO, e:) =0 Power flow equations

=(st, Ay) =0 Storage dynamics

v, <y, < U, Bounds on decision variables,

ramping constraints

¢ () is a cost function at period t.
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Mathematical Representation

min [E

T
ZCt (°)}

Subject to, for all nodes, and all time periods

b (pg, dy, w) =0 Power balance equations
OO, e:) =0 Power flow equations

=(st, Ay) =0 Storage dynamics

v, <y, < U, Bounds on decision variables,

ramping constraints

¢ () is a cost function at period t.
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Structure of the EDP Decision Process

New information
Current state

Decisions

Current state = Relevant information at
each time period, such as:

v" Level of storage (s,),

v previous generation levels (P, ,),

v" wind forecast (r,)

v’ past wind output (w,,)...

I99[J UOI}ISURIT,

Next state

18



Mathematical Formulation with Decision

Process
Fort=T7,T—-1,---,1:

E(Stapt—la wt—l) :min{ct () + K {Ft+1(5t+1}pt} I”Vt)} }
S.t. (I)(pt, dt, wt) =0

@(Qt, 675) =0
E(St, At) =0
v, <P, <y

m Fi1(Se41, e, we), called cost-to-go is the cost from period
t + 1 through the end of the horizon.

m T'wo sources of complexity:
m Computation of an expectation

m Optimization step for each state value (s, p;_1,w; 1)
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Example of Discretization

12 14 16 18 20 22 24 26 28
Dimension 1

Consider a 2-dimensional
state space

Or consider:
5 wind turbines, 5 storage devices
and 5 generators; Each dimension
discretized into 10 levels (in each
time period);

In total
10° x 10° x 10° =10 grid points.

The problem cannot be solved for all
discrete state values (S, p,_;, W,_,).
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Curse of Dimensionality

 For instance, excluding the ramping constraints, and the
wind farms

* Let n be the number of storage units, and

e assume each storage level is discretized into k values
each

n k Size of the grid
2 7 49
b 7 16 807
7T 7 823 543
10 7 282 475 249
13 7 96 889 010 407
15 7 4747 561 509 943




Approximation via Stochastic Dual
Dynamic Programming (SDDP)

Developed by Pereira and Pinto (1985, 1991), borrowing
Ideas from Bender's decomposition

Main idea : No discretization of the space, but sampling

Success stories in hydrothermal system management
problems

Alternates between
» forward (to sample the state space), and
» backward loop (to refine the approximation)
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SDDP Approximation

m Replace E |:Ft+1(8t+1, i, Wt)} (assumed to be convex) with

some _lower bound V. (St11,ps, wy).

Cost-to-go

A A

Vi
Vi

—=,. State

O ‘A/;H—l(st—l—lyptth) = mgm{Hg+l(8t—|—laptawt)|i €I}
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SDDP Formulation

Fort=1,7T—-1,.---,1

T
Ft(stapt—lawt—l) min{z ct () ‘|‘}0t—|—1} (1)
t=1
S.t. ®(pi,di,wi) =0 (2)
O(0;,e) =0 (3)
=(s1, Ay) = (4)
Iy <O <y (5)
pri1 > g + Gy St41 T Gpibt + gyiwe, 1 <1< 1
(6)

[ +10 Opis §w%] are computed at period t + 1.

24



Fort=1,7T—-1,---

min{zT:ct ( (1)

A

Ft(stapt—la wt—l)

SDDP Formulation

, 1

(pt,dt,wa =0 Faster (2)

06, ¢;) = computation of the (3)
(approximate)

Z(s1, Ay) = value function  (4)

U, < ¥, <, (5)

pri1 > Gy + Gsi, St+1 + Gpibt + Gypwr, 1 <1

(6)

[ +10 Opis gwt] are computed at period t + 1.
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Algorithm Procedure

setk=0

|

For each hour t =T,T-1,..,1, find an
estimate for the cost function for the
future expected cost.

)

For each hour t = 1..T, simulate the
operation of the network using the
approximations built in the previous

iteration

Is the performance satisfactory?

no \l/ yes

set k = k+1 stop
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Algorithm Procedure

ot et et e e e et

Inputs : Initial state
Initialize stopping criterion
while stopping criterion not met do
Simulate M trajectories of wind output
Forward Loop
for For each wind value do
for For each time period (from the first to the last) do

Solve the current approximate problem
Store the optimal decisions
end for
end for
Backward Loop
for each time period, starting at the last one do
for each optimal decision from the previous forward loop do
sample K wind values for the current period
for each sampled wind value do
solve the approximate problem using the trial decisions from the previous
forward pass

~1 =~ . s .
calculate [Ct—l—l ) gp% ; Q‘w%}

end for
end for
end for

update the convergence criterion
end while
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Sample Results

1. ‘Validation’ results with IEEE 9-bus test system
 Comparison with SDP as a "true” solution

2. Testing with IEEE 57- and 118-bus systems
e four correlated wind farms
 30% capacity factor
 20% wind penetration
« four storage units at highest load buses

A good approximate algorithm should prescribe when to
charge, and discharge the batteries, based upon the load
profile and battery characteristics.
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Preliminary Results: IEEE 9-bus system
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Figure: Example of storage trajectory when charging (discharging) cost is low
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Preliminary Results: IEEE 9-bus system

= = = Storage = Net load
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Figure: Example of storage trajectory when charging (discharging) cost is high
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Benchmarking to SDP

Method Run 1 Run 2
SDDP 499.35 1 876.22
SDP 13 038.16 | 12 726.88

Table: Solution cost: SDDP and SDP

Table: CPU time in seconds: SDDP and SDP

10-30 mins versus
3.5 hours

Run 1
Method Min Max Mean Stand. deviation
SDDP | 78 622.29 | 162 215.38 | 126 872.83 21 812.53
SDP 75 392.76 | 161 872.07 | 125 968.26 22 922.10
Run 2
Method Min Max Mean Stand. deviation
SDDP | 88 691.21 | 164 333.09 | 134 267.42 19 210.77
SDP 85 882.05 | 164 333.09 | 133 981.13 19 657.52
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Benchmarking to SDP

Validation experiments conducted on the IEEE 9-
bus test system

 differential allocation of storage resources,
e responsive to individual storage parameters
e accurate relative to SDP solution, but
 significantly less computational burden
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Example of Optimal Storage Strategy

118-bus system
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Figure: Mean storage trajectory (over 100 simulations) : five storage units and

one wind farm
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Level of the battery in MW

Level of the battery in MW

Example of Optimal Storage Strategy

57-bus system
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Level of the battery in MW

Lewvel of the battery in MW

Example of Optimal Storage Strategy

118-bus system
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Optimal Utilization of Batteries
IEEE 57-bus system
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Optimal Utilization of Batteries
IEEE 118-bus system
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Comparing Solution Times

Table: Computation time in seconds for different number of buses,
storage facilities and wind farms

# buses |S| |M]| Time # buses |S| |M]| Time
30 1 1 1 229.80 118 1 1 2 399.35
30 D 1 1 582.67 118 D 1 2 444.99
30 D D 1 323.88 118 5! 5! 2 453.89
57 1 1 1 388.09 118 10 D 2 179.62
57 5) 1 1 454.47 118 20 10 2 248.39
57 D D 1 396.26 300 1 1 4 159.16
57 10 D 1 597.71 300 5! 1 4 234.72
39 1 1 1 570.67 300 5! 5! 4 570.01
39 D 1 1 709.68 300 10 5! 4 617.65
39 D D 1 575.09 300 20 10 5 036.37
89 10 D 1 737.32

The solution time seems to remain reasonable as the size of the
network and the dimension of the state space increase.
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SDDP Summary

like SDP, allows optimization of the trade-off
between here-and-now reward against the value of
future flexibility

exhibits appropriate use of storage units

approximation manages the dimensionality problem
for computational tractability,

relatively easy to implement,

SDDP allows the effective dynamic optimization
with computation time and solution accuracy
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Conclusions

* The challenge of distributed storage can be
handled with accurate approximate methods

 Individual storage facilities can be modeled
iIndividually and operated in a jointly optimal way

 Related work considers the importance of
accounting for correlation among wind sites

Next Steps

e testing on larger systems, with high penetration,
more distributed units

e operational parameters for existing facilities and
will be useful in future
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Questions?

Lindsay Anderson
(cla28@cornell.edu)
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