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Cloud Opportunity

« Resource elasticity: pay for what you need, only
for as long as you need it
* Low constant cost
« Massive computation available if needed (event
analysis, etc.)
« Geographic flexibility
« data and computation located close to where needed

* move to (or backup in) distant location for disasters
(Hurricane Sandy experience)

« Neutral ground for data sharing

« Data sharing platform need not be under physical
control of one utility, ISO, etc.



Cloud-specific Challenges

Clouds such as EC2 are surprisingly hostile for real-time work
« Underlying scheduler and network layer are
unreliable

e Strange timing problems, bursts of message loss,
other anomalies

« Overcoming this is made difficult by Amazon’s
unwillingness to document the AWS infrastructure

« But we've never encountered a problem that we
couldn’t eventually pin down and solve



Business Environment Challenges

Distinct owners: peers &hierarchy (1SO)

Owners control data flow: entities have different
security & sharing policies

ISOs integrate data ... but as we get further
from sources, guality of information is a potential
concern

How valuable i1s shared PMU data for
operations?

* |s sharing unthinkable due to technical barriers? We
can help with that

 Due to business barriers? That's harder!



System Concept
A distributed platform for real-time data collection, storage,
processing and dissemirl_aﬂg)»~ using Cloud Computing
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 Use redundancy to overcome real-time disruptions and
failures.

« Use proven techniques from distributed computing to
manage issues of consistency and availability



Redundant Communication
Reliability and Performance

Different network
paths and delays
cause shards to
receive the same
data at different
times

Internet

Delay is an issue
inside the Cloud
as well as in the
Internet

Data Collectors forward data and can (optionally) store them as
received in disk files using our real-time snapshotting file system.



System Architecture

Application Layer: Currently,
hosts the WSU state estimator
(GridStat publisher/subscriber
and state estimation program)

Other Future
Applications

Other Future
Applications

GridCloud File System,

GridCloud Collaboration Tool

Lowest layer of GridCloud running in the cloud:
CloudMake, Data collectors

Number needed depends on observed delay and jitter

One or more TCP streams using TLS security or VPN.m Streams of PMU/PDC data

Data originate in utility system: sensors/EMS/etc. within a
utility/ISO/etc.




GridCloud —the ARPA-E Demonstration

Scalability and Fine-grained Replication
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GridCloud for ARPA-E Demonstration
Simulated 6K Bus WECC System

 Comparison of 6K to 179 Bus system:

Substations 2.29x
Busses 179 6,000 33.52x
Streams (PMUs) 1,577 4,632 2.94x

* Power System Description:
* 6,000 busses

« A simplified model (~1/3"9 number of busses) of the entire
WECC system

« This is the primary model used by industry and academia
for studying the July 2" 1996 blackout

« All power components (busses, branches, etc.) in the
system above and including 230kv are monitored
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ARPA-E GridCloud Demonstration
(6K bus, 3 Replicas)
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ISO-NE GridCloud Demonstration
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ISO-NE SYSTEM

New England System
761 buses (planning model)

/3 PMUs

* 96 voltage phasors
« 127 current phasors

93 buses observable (including all 345kV)

11 seconds of recorded real time data

« PMU data @ 30Hz

« PMU data is run in a loop to obtain longer runs
LSE solution @ 5Hz

* Returned as C37.118 data stream
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ISO-NE Demonstration
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ISO-NE Demonstration Monitoring

L3raw: Round trip Kom datasource to CloudRelay to datasource
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Performance
L2 and L3 Latency Tests

Sampled over 4 hours

Tests performed from Cornell and ISO-NE datasource machines over
SSH tunnels

Sampled 4 raw feeds and two SE feeds from each datacenter
* Lowest numbered PMU from each datasource (ISO-NE and Cornell)
* Highest numbered PMU from each datasource

 PMUs send to the cloud in order from the datasource; this helps
show us the spread of data from first to last measurement sent
per round

* Lowest and Highest latency SE result

Tests presented in the following slides as histograms and table of overall
statistics

« Histograms only cover highest numbered PMU/SE as they have the
highest variability
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Latencies (milliseconds)
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Latencies (milliseconds)
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OpenPDC Manager (Visualizer) Displaying SE
Results
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Graph Real-time Measurements
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Cyber-security Performance Cost

EC2 Latency

* Average = 245ms

« 1St Percentile = 211ms

« 99t Percentile = 255ms
VPC Latency

* Average = 261ms

« 1St Percentile = 228ms

« 99t Percentile = 270ms
Delta is approximately +15ms

These numbers (L1 latencies) do not include SE compute
time (75ms-100ms)

Adding SSH tunnels added less than 2ms to RTT
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Main Findings

Cost: As configured for testing

« 13 AWS instances total per datacenter (Vizualizer, CloudRelay,
CloudMakelLeader, StateEstimator, 3xRawArchiver,
AxSEArchiver, 2xForwader)

« $2.47/hr to run per datacenter

Latency: Round-trip time including LSE solution on an eastern
data center was 300ms: on the western data center was 500ms

Consistency: Returned raw data and LSE results from the two
data centers were identical

Security Effect on Latency: Cost of AES256 encryption at
noise level; cost of SSH 2ms; data loss & delays were not observed
and did not affect latency

Fault Tolerance: Loss of one data center did not impact results
from other data center. Restart of lost data center took 175sec
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Additional Platform Features

 Distribute real-time data streams to multiple
applications in the cloud

* Freeze-Frame File System (FFFS)
 Distributed, time-consistent snapshots of stored data
« Tamper-proof data

 CloudMake

* Declarative specification of GridCloud components,
their interconnection and the cloud resources that
they use

« Automated instantiation, monitoring, and repair of
GridCloud components when instances or
communication fail
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For Further Investigation

 Flexibility to incorporate multiple entities (actual

sharing)
« Naming and configuration for sharing

* Cyber-security
* Recording time-synchronized system topology
along with PMU data (FFFS should help)

* New project starting with NYPA to investigate
these and other issues
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Questions?

Carl Hauser
(hauser@eecs.wsu.edu)
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