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Swing Dynamics: Input-Output Properties 

• Oscillations and transients in the power transmission 
network are governed by the swing equations.
• The model is a nonlinear DAE, but admits linear approximations.
• Lots of work on the internal properties (modes)

• Engineers care about input-output characteristics of 
models (e.g., the swing-dynamics):

• The linearized input-output map can be expressed, in 
the Laplace domain, as a transfer function:

𝑍𝑍(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

= 𝐻𝐻 𝑠𝑠 = 𝑠𝑠+𝑞𝑞1 ×⋯× 𝑠𝑠+𝑞𝑞𝑚𝑚
𝑝𝑝(𝑠𝑠)
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𝑑𝑑 ∆𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝐽𝐽 ∆𝑥𝑥 + 𝑄𝑄 u
𝑧𝑧 = 𝑅𝑅∆𝑥𝑥

May represent:
control channel, 
disturbance response, etc.

Numerator roots are zeros.
System is non-minimum-phase
if a zero has positive real part. 



Why Should Power Engineers Care About 
Input-Output Properties?

• Changing paradigm for wide-area analysis and control of transients.
– New technologies: power electronics, wide deployment of PMUs, 

pervasive communications.
– New needs: increased stress and variability (e.g. due to renewable 

integration), new sources of disruptions, decentralization, etc.

• Input-output dynamics (transfer functions) matter!
– Analysis: Will a disruption at one location cause swings at other 

locations?
– Control: can multiple, remotely-located sensors and actuators be used 

to damp oscillations and transients?  
– Model reduction: do standard reduced-order models maintain input-

output properties?
– The zeros are the essential invariants of these input-output dynamics.

• In particular, it matters if the system is minimum-phase or not.

• Engineers need simple, graph-theoretic insights…
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Modeling and Analysis Goals

• We consider the simplest evocative model for the swing-
dynamics, but impose control input(s) and measurements:

𝛿̇𝛿
𝜔̇𝜔

= 0 𝐼𝐼
−𝐻𝐻−1𝐿𝐿(Γ) −𝐻𝐻−1𝐷𝐷

𝛿𝛿
𝜔𝜔 + 0

𝑒𝑒𝑖𝑖
𝑢𝑢 𝑦𝑦 = 0 𝑒𝑒𝑗𝑗 𝛿𝛿

𝜔𝜔

where Γ is a graph of line susceptances, L is the graph’s 
Laplacian matrix, the diagonal matrix H captures generator 
inertias, the diagonal matrix D captures dampings, and i and j are 
input/output locations.

• The poles have been extensively analyzed in the power literature.

Main Goal: characterize the zeros (and specifically minimum-
phase characteristics) in terms of the network’s structure (Γ, 
H, D), and input/output locations.

• Use these results to  gain insight into control, disturbance analysis, and 
model reduction
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Related Literature

• N. Martins and co-workers explored numerical 
computation of zeros for the swing-dynamics 
model.

• Recent work in the controls-engineering 
community, on relating the zeros to the 
network’s graph.
• Mostly for simpler models. 
• Initial work by Allgower’s group, Selec’s group, and 

my group.
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Exploratory Example

• This system is minimum phase!
(Transmission zeros are shown)

Note: if the output is the frequency instead of
angle, there is one additional zero at s=0.

--Graph Γ is shown.
--Dampings are all equal to 0.1, 
--Inertia at bus 4 is 2 while other

inertias are 1 (there’s a large 
conventional generator at bus 4).

--Input at  bus 1, output at bus 2
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ans =

-0.0631 + 1.6934i
-0.0631 - 1.6934i
-0.0298 + 1.6678i
-0.0298 - 1.6678i
-0.0292 + 0.6585i
-0.0292 - 0.6585i
-0.0529 + 0.9536i
-0.0529 - 0.9536i
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Example (continued)

• Becomes nonminimum phase!
(Transmission zeros are shown)

• More power flow on line 1—2 exacerbates the
problem

--Graph is shown.
--Dampings are all equal to 0.1, 
--Wind farm replaces conventional

generation at bus 4,  inertia decreases 
to 1. 

--Input at  bus 1, output at bus 2
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ans =

-0.1168 + 0.8784i
-0.1168 - 0.8784i
0.0168 + 0.8784i
0.0168 - 0.8784i

-0.0826 + 1.7969i
-0.0826 - 1.7969i
-0.0174 + 1.7969i
-0.0174 - 1.7969i 7



Example (continued)

• Still nonminimum phase with
reversed input and output.

(Transmission zeros are same as
previous slide.)
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Dependence of Dominant Zero on Network 
Parameters
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Root locus viewpoint
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Model Reduction and Zeros

Imagine the buses 4 and 5 are 
geographically distant, so we
develop a reduced model for 
them (or only have a reduced 
model).

-- In particular, replace them 
with a single generator with 
twice the inertia (as obtained 
from a coherency-based 
reduction).
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• Modes are preserved fairly well…

Full:                                Reduced:
ans =

-0.0500 + 1.9674i
-0.0500 - 1.9674i
-0.0500 + 1.7313i
-0.0500 - 1.7313i
-0.0500 + 1.6507i
-0.0500 - 1.6507i
-0.0500 + 0.9987i
-0.0500 - 0.9987i
-0.0500 + 0.9470i
-0.0500 - 0.9470i
0.0000          

-0.1000 

ans =

-0.0500 + 1.8106i
-0.0500 - 1.8106i
-0.0458 + 1.7313i
-0.0458 - 1.7313i
-0.0500 + 1.1031i
-0.0500 - 1.1031i
-0.0375 + 0.9991i
-0.0375 - 0.9991i
0.0000          

-0.0834 
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• But zeros change…
• Reduced system is minimum-phase!

Full:                                Reduced:

ans =

-0.0826 + 1.7969i
-0.0826 - 1.7969i
-0.0174 + 1.7969i
-0.0174 - 1.7969i
-0.1168 + 0.8784i
-0.1168 - 0.8784i
0.0168 + 0.8784i
0.0168 - 0.8784i

ans =

-0.0437 + 1.7047i
-0.0437 - 1.7047i
-0.0254 + 0.7902i
-0.0254 - 0.7902i
-0.0559 + 1.2099i
-0.0559 - 1.2099i
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Impulse responses are very similar! 17



…but the frequency response (specifically, phase response) 
changes drastically.
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How Does Congestion (High Loading) Impact 
Zeros?

• Increasing penetration of intermittent 
renewables is causing increasing variability in 
operating points.
• Need to understand how changing operating profiles 

impact zeros
• Analysis thus far has assumed lightly-loaded 

lines.
• Linearization around zero operating point

• Need to understand impact of changed loading 
profile.
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Changing Operating Points and Zeros
• Changing operating points can be viewed as modifying 

susceptances in the linearized model.
• Congested lines become “weak”
• Increased loading exacerbates fragility

• We have identified nonminimum-phase pairs for the 
France-Spain power network, for varying loadings.
• Aggregated model with 8 generators, 56 load buses

Generator Type Bus name Node number
Offshore OFFS3P61 1
Offshore OFFS4P61 2
Nuclear PALUEP71 3
Nuclear PALUEP72 4
Nuclear PALUEP73 5
Nuclear PALUEP74 6
Nuclear PENLYP71 7
Nuclear PENLYP72 8
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Congestion and Zeros

load 0 10% 20% 30% 40%

in-out in-out in-out in-out in-out

pair of non-minimum phase 
nodes

1     7 1     2 1     2 1     2 1     2
7     1 1     8 2     1 1     7 1     7

2     1 2     4 2     1 2     1
2     4 2     6 2     4 2     4
2     6 3     4 2     6 2     6
3     4 4     2 3     4 4     2
4     2 4     7 4     2 4     3
4     8 6     2 4     5 4     5
6     2 7     1 4     7 4     7
6     8 7     4 6     2 4     8
7     1 7     1 5     1
7     4 7     4 5     4

6     2
7     1
7     4
8     4

Generally, heavily-loaded networks have more nonminimum-phase channels.
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Enhanced Model:  DC Line Control

• Oscillations caused by controllers for DC lines is a 
concern.
• Experiment in WECC many years ago, recent interest for the 

France-Spain interchange.

• The classical model has been enhanced to capture DC 
line controls.
• Proportional, PD, and lead-lag controls; also measurement 

delays (Pade approximation).
• Real-world experience suggests that measurement delays 

cause problems, strong filters or PD control may resolve.

• Main Result: PD control across DC lines does not 
nominally introduce nonminimum-phase behavior, 
however measurement delays can lead to nonminimum-
phase behaviors.
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Formal Analysis Approach

• Main goal: develop graphical conditions for 
nonminimum-phase dynamics.

Step 1: Characterize the relative degree in terms 
of the distance d between the input and output in 
the network graph.
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Formal Analysis

Step 2. Algebraic result: express the zeros as the 
eigenvalues of a matrix, say 𝐴𝐴𝑎𝑎𝑎𝑎.

• Normal way to find zeros is via a generalized eigenvalue 
problem.

• The special coordinate basis instead allows analysis of zeros via 
a true eigenvalue problem.

• This is a starting point for graph-theoretic results; also appealing 
for computation.

Concept:

Key insight for graphical results: the matrix 𝐴𝐴𝑎𝑎𝑎𝑎 is a 
sparse perturbation of a submatrix of the state matrix 
A.

𝑠𝑠 + 2
𝑠𝑠2 + 7𝑠𝑠 + 12

𝟏𝟏
𝑠𝑠 + 5

2
𝒔𝒔 + 𝟐𝟐

Σ
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Formal Analysis
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Formal Analysis

• Step 3.  Understand how the zeros state matrix 
𝐴𝐴𝑎𝑎𝑎𝑎 relates to a submatrix of A (𝐴𝐴𝑛𝑛𝑎𝑎).
• Only a few entries are different, depends 
on the graph…

•

• 𝑑𝑑 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖 + 𝑑𝑑 𝑗𝑗, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝑑𝑑 +
1

• i adjacent to special 
in.-out. path

i

j
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Formal Analysis: Graphical Results

• Tree networks are always minimum-phase.
• Single path between input and output is sufficient.

• If the shortest input-output path is sufficiently 
weak compared to other paths, then the 
dynamics is non-minimum phase.
• If it is sufficiently strong, then minimum phase.

• Well-damped networks are minimum phase.
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More Graphical Results

• The damping of generators at input node and output 
node do not have any effect on the zeros.

• If two separate networks are minimum phase and 
are connected by only one line, the new network will 
be also minimum phase.
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Formal Results: HVDC Line

• Consider a network with P-controlled HVDC line 
between the input and the output nodes.  For large 
enough proportional gains, the network is minimum 
phase.

• If a PD or lead-lag network is used, either the 
proportional gain or the derivative term can be increased 
to make the dynamics minimum phase.

• However, measurement delays cause non-minimum-
phase dynamics, when these high gain controllers are 
used.
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Just for Fun

• This research is part of a broader effort to understand 
input-output dynamics in networks.
• Applies to diverse wide-area control problems for infrastructures. 
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Application 1: Cyber- Risk Assessment 
for the Air Traffic Management System
• From the linearized model:

𝑥𝑥𝑡𝑡[𝑘𝑘 + 1]
𝑥𝑥𝑐𝑐[𝑘𝑘 + 1] = 𝐺𝐺𝑡𝑡𝑡𝑡(Γ𝑡𝑡) 𝐺𝐺𝑐𝑐𝑐𝑐(Γ𝑐𝑐𝑐𝑐)

? ? 𝐺𝐺𝑐𝑐𝑐𝑐(Γ𝑐𝑐)
𝑥𝑥𝑡𝑡[𝑘𝑘]
𝑥𝑥𝑐𝑐[𝑘𝑘] + 0

𝐵𝐵𝑐𝑐
𝑢𝑢[𝑘𝑘]

– Can a blunt disruption u[k] cause big  deviations, or induce 
oscillations?  This is a stability and  robustness analysis.

– If a sophisticated attack designs u[k], how much effort is needed to 
achieve a specific disruption?  This is a controllability or state-hijacking 
problem.

– Most important: how does a disruption at one location (cyber or 
physical) affect traffic at key bottleneck locations – this is an input-
output analysis! 32



Application 2: Epidemiology/Biology

Zoonotic Disease Control

Sleep Biology
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Thanks!

• We are extremely appreciative of the support 
provided by RTE-France for this project.

• Collaborators: 
– Kasra Koorehdavoudi (WSU)
– Mohammadreza Hatami (WSU)
– Florent Xavier (RTE)
– Thibault Prevost (RTE)
– Mani Venkatasubramanian (WSU)
– Patrick Panciatici (RTE)
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Questions?

Sandip Roy
(sroy@eecs.wsu.edu)
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