Electromagnetic transient and phasor domain hybrid simulation and its application to detailed FIDVR studies

Vijay Vittal – Ira A. Fulton Chair Professor Qiuhua Huang – Graduate Student John Undrill – Research Professor Arizona State University Work done in PSERC Project S-58

PSERC Webinar October 4, 2016

Introduction

Significant changes in power systems

Two main challenges in power system dynamic simulation

- 1. Modeling and representation of an increasing number of power electronic devices in dynamic simulation
 - Quasi-steady-state model or performance model in TS simulators
 - Fast switching and control cannot be adequately represented

Two main challenges in power system dynamic simulation

2. Representation of distribution systems in power system dynamic simulation

- Various load models: ZIP, motor + ZIP, CMPLDW 1) computational limitation; 2) availability of distribution system data
- Developments of distributed generation, EV and storage significantly change the behavior of distribution systems
 - Past: the voltage profile gradient along the feeder was small
 - Now the locations matter: A/C stalling, local volt/VAr support of DGs
 - Load modeling \rightarrow distribution system modeling

Integrated transmission and distribution (T&D) systems

- EPRI proposed "the integrated grid" framework—for fully realizing the values of distributed and central generation resources
- To analyze the increased interactions between T&D and to take advantage of them

Two main challenges in power system dynamic simulation

2. Representation of distribution systems in power system dynamic simulation *Detailed 3-phase*

Three-sequence, phasor representation down to models primary feeder level Substation Color Key: Ste Down Red: Generation Subtransmission Trar sformer Customer Blue: Transmission 26kV and 69kV Green: Distribution Transmission lines Black: Customer 765, 500, 345, 230, and 138 kV **Generating Station** Primary Customer 13kV and 4kV Secondary Customer Transmission Customer Generating 120V and 240V 138kV or 230kV Step Up Transforme

Three-sequence transient stability *EMT or three-phase dynamic simulation*

Development of Hybrid Simulation

Detailed system modeled in an EMT Simulator

External system modeled in a TS Simulator

OpenHybridSim: A new EMT-TS hybrid simulation tool

- A decoupled architecture
- Three-sequence TS simulation developed based on InterPSS
- Network equivalents:
 - Three-phase Thévenin equivalent of the external system in EMT simulation
 - Three-sequence current source $I_{EMT(t)}^{120}$ as the equivalent of the detailed system in three-sequence TS simulation
- TCP/IP socket communication for connecting two simulators
- A generic interface framework for integrating with different EMT simulators, e.g., PSCAD, ATP-EMTP

Equivalent of the external system in EMT simulation: Three-phase Thévenin equivalent

Equivalent of the detailed system in TS simulation: threesequence current source

- Three-sequence current source
 - Seamlessly integrated into the network solution step of the three-sequence TS simulation
- Obtained from boundary current injection waveforms using FFT and 3-phase to 3-sequence transformation

The detailed system is represented by threesequence current sources in TS simulation

FFT component in PSCAD

Three-sequence TS simulation

Interaction protocol

• Interactions between the two simulators

Implementation of the Two Interaction Protocols

The fault-induced delayed voltage recovery problem

• What is FIDVR problem?

A 230 kV bus voltage profile during a typical FIDVR event [1]

• Root cause:

Stalling and prolonged tripping of 1- ϕ residential air conditioner (A/C) compressor motor

• Direct impact of distribution on transmission system

[1] D. N. Kosterev, A. Meklin, J. Undrill, B. Lesieutre, et al., "Load modeling in power system studies: WECC progress update," in 2008 IEEE Power and Energy Society General Meeting, 2008, pp. 1-8.

LTC/CAPS OFF

The FIDVR Problem

- FIDVR has mainly been studied using CMPLDW and positive-sequence TS simulation programs
- Limitations of the CMPLDW model
 - Limited representation of distribution systems and DGs
 - > Performance-based 1- ϕ A/C compressor motor model
 - Point-on-wave (POW) effects cannot be considered
 - ➢ Not suitable for cases involving unbalanced conditions
- The issues above can be overcome by hybrid simulation

Application of EMT-TS hybrid simulation to FIDVR study on the WECC system

The WECC system

Buses	Transmission lines	Generators	Loads
15750	13715	3074	7787

Buses with a large percentage of 1-Φ A/C load

- Bus 24151
- Bus 24138

One-line diagram of the study region

Summary of the detailed system

Total number of buses	238	
	500 kV	7
Number of	230 kV	37
buses of	161 kV	3
different	115 kV	68
voltage levels	92 kV	18
	<= 66kV	105
Total Load	11.9 GW	
Interface	8	
DUSES		1.5

[2] Y. Liu, V. Vittal, J. Undrill, and J. H. Eto, "Transient Model of Air-Conditioner Compressor Single Phase Induction Motor," IEEE Transactions on Power Systems, vol. 28, pp. 4528-4536, 2013.

[3] William H. Kersting, Distribution System Modeling and Analysis (Second Edition), CRC Press, 2006, p.52-54

Case A: phasor voltage magnitudes

The Point-On-Wave Effects

Case B: POW at the peak of phase A voltage waveform (90 degrees)

Case B: phasor voltage magnitudes

22

Application of hybrid simulation to power systems interfaced with a LCC-HVDC system

- Test case: IEEE 39 Bus system with a LCC HVDC infeed
- HVDC system

Application of hybrid simulation to power systems interfaced with a LCC-HVDC system

from the HVDC inverter

The DC voltage (V_{dc}) and current (I_{dc}) of the HVDC inverter

Application of hybrid simulation to power systems interfaced with a LCC-HVDC system

Application of hybrid simulation to power systems interfaced with a LCC-HVDC system

Simulation differences with reference to full-blown EMT simulation

Monitored parameters	Average difference/pu	Maximum difference/pu
DC Current of the inverter	0.024	0.224
DC Voltage of the inverter	0.029	0.524
Three phase current into the network at the inverter	0.049	0.351
Three phase voltages of bus 39	0.022	0.155

Computational times of hybrid simulation and EMT simulation

Simulation method	Total computation time*	
EMT simulation using PSCAD	352 s	
EMT-TS hybrid simulation	81 s	
	* 5-second simulation	

Applied to power systems interfaced with HVDC

- IEEE 39 bus + VSC-HVDC
- VSC-HVDC
 - Two-level, PWM, decoupled vector control
 - Carrier frequency is 1980 Hz
- EMT simulation using PSCAD
 - The whole system
 - Time step : $5 \mu s$
- Hybrid simulation
 - The part encircled by the dashed line is modeled in detail in PSCAD
 - Boundary buses: Buses 26 and 8
 - EMT time step : $5 \mu s$
 - TS time step: 5 ms

Applied to power systems interfaced with HVDC

- <u>Scenario</u>: a single-line-toground(SLG) fault is applied on bus 29 (AC bus of the rectifier) at 1.0 s and cleared after 0.05 s
- Response of VSC-HVDC rectifier to the fault:
 - (a) Real power
 - (b) Reactive power flowing into
 - the rectifier(c) DC voltage
 - (d) DC current

Applied to power systems interfaced with HVDC

• Positive sequence (a) voltage of bus 25 (within the external system)

Computation times for a 2-second simulation

Simulation method	Computation time	
EMT using PSCAD	1152 s	
Hybrid simulation	164 s	7 times

Integrated T&D system modeling

• Physically:

- Distribution systems : in general, 3-phase unbalanced
- Transmission system: 3-phase reasonably balanced
- Conditions at boundary between T&D: 1) reasonably balanced under normal operating conditions; 2) could be significantly unbalanced during and post contingency
- Modeling

Integrated T&D power flow (TDPF)

- Master-slave splitting method
 - Iteratively solve power flow for the transmission and the distribution systems
- Transmission system power flow
 - Positive sequence: conventional power flow •
 - Negative- and zero- sequence: network solution (I=YV) ٠
- **Distribution system power flow**

algorithm

3-phase power flow: backward/forward sweep algorithm

T&D dynamic simulation based on the Multi-Area Thévenin Equivalent (MATE) approach

• Partitioned dynamic simulation method: used in PSS/E and PSLF

 $\dot{x} = f(x, V)$ \rightarrow Integration step I(x, V) = YV \rightarrow Network Solution step

- Main challenges lie in the network solution step
- The MATE [4] approach is employed in the network solution step

[4] Martí, José R., Luis R. Linares, Jorge A. Hollman, and Fernando A. Moreira. "OVNI: Integrated software/hardware solution for real-time simulation of large power systems." In Proceedings of the PSCC, vol. 2. 2002.

Three-phase dynamic simulation

- Developed by extending existing three-sequence system modeling and TS simulation
 - Modeling: Inheritance and the adapter design pattern
 - Simulation procedure: the same as the positive-sequence TS except for the three-phase oriented network solution

Transformation from three-sequence modeling to three-phase modeling

Development of three-phase machine dynamic model based on the corresponding three-sequence model using the adapter pattern 34

Flowchart of the integrated T&D dynamic simulation

Conclusions

- A normally cleared SLG fault could result in A/C motor stalling and propagation to the non-faulted phase, depending on the connection of step-down transformers
- A/C compressor motors could take a much longer time than 2-5 cycles (typical T_{stall} value) to stall when the equivalent impedances between the fault point and A/C motors are large.
- The point-on-wave effects deserve more attention as different POWs could lead to significantly different results in terms of A/C motor stalling.
- OpenHybridSim, the first open-source tool for EMT and phasor domain hybrid simulation, has been developed and is available from: https://github.com/OpenHybridSim
- A modeling framework and power flow and dynamic simulation algorithms for integrated T&D systems have been developed

Publication

Qiuhua Huang, V. Vittal, "<u>Application of</u> <u>Electromagnetic Transient-Transient Stability Hybrid</u> <u>Simulation to FIDVR Study</u>," IEEE Transactions on Power Systems, Vol. 31, No. 4, pp. 2634-2646, July 2016.

Questions?

Vijay Vittal (vijay.vittal@asu.edu)