### Robust Transmission Planning under Uncertain Generation Investment and Retirement

Lizhi Wang

Iowa State University

**PSERC Webinar** 

April 19, 2016



#### PSERC M-30 Collaborators

- Aftab Alam, CAISO
- Bryce Bowie, SPP
- Jay Caspary, SPP
- Juan Castaneda, SCE
- Bokan Chen, ISU
- Flora Flygt, ATC
- Anish Gaikwad, EPRI
- George Gross, UIUC
- Shih-Min Hsu, Southern Co.
- Anil Jampala, Alstom
- Murali Kumbale, Southern Co.
- Sakis Meliopoulos, Georgia Tech

- David Mindham, ITC Holdings
- Kip Morison, BC Hydro
- Aditya Jayam Prabhakar, MISO
- Jim Price, CAISO
- Curtis Roe, ATC
- Harvey Scribner, SPP
- Hussam Sehwail, ITC Holdings
- Robert Sherick, SCE
- Michael Swider, NYISO
- Mark Westendorf, MISO
- Lan Trinh, ABB
- Feng Zhao, ISO-NE

#### **Outline**

Background

Proposed approach

3 Case study

#### Introduction

#### Transmission planning is **important** for

- Serving increased demand
- Enhancing reliability
- Relieving congestion
- Facilitating renewable energy penetration

#### Transmission planning is challenging because of

- Long planning horizon
- Multiple stakeholders
- Many sources of uncertainty
- Assessment criteria

#### Literature review

| Literature   | Objective | GEP         | Uncertainty       | Model              | Buses | Horizon   | AC/DC |
|--------------|-----------|-------------|-------------------|--------------------|-------|-----------|-------|
| [Akbari12]   | I+O+L     | none        | load              | SP, multi-obj      | 24    | 12 yrs    | AC    |
| [Alguacil03] | I+O       | none        | none              | MILP               | 46    | 1 period  | AC    |
| [Carrion07]  | I +L      | none        | line              | SP                 | 48    | 2 periods | DC    |
| [Chen15]     | I+O+L     | range       | load, GEP         | minimax            | 118   | 20 yrs    | DC    |
| [Choi05]     | I         | none        | line              | MILP               | 21    | 1 period  | DC    |
| [Escobar04]  | I+O       | none        | none              | MINP               | 93    | 1 period  | DC    |
| [Garces09]   | I+O       | bilevel     | load, line        | stochastic bilevel | 24    | 10 yrs    | DC    |
| [Hemmati14]  | I+O       | none        | load, wind        | MINP               | 24    | 15 yrs    | AC    |
| [Khodaei13]  | I+O+L     | central     | line              | MINP               | 118   | 20 yrs    | DC    |
| [Maghouli11] | I+O       | uncertainty | GEP               | robust             | 51    | 15 yrs    | DC    |
| [Moeini12]   | I+O+L     | none        | load, wind        | MINP, multi-obj    | 51    | 10 yrs    | DC    |
| [Munoz14]    | I+O       | central     | policy, fuel      | SP                 | 240   | 3 periods | DC    |
| [Orfanos12]  | I +L      | none        | load, wind        | MINP               | 24    | 1 period  | DC    |
| [Pozo13]     | I+O       | bilevel     | load, wind        | trilevel           | 34    | 1 period  | DC    |
| [Sepasian09] |           | central     | none              | MINP               | 49    | 10 yrs    | DC    |
| [Shrestha04] | I+O       | none        | none              | MINP               | 24    | 8 yrs     | DC    |
| [Torre08]    | I+O       | none        | load, fuel, GEP   | MINP               | 23    | 1 yr      | AC    |
| [Weijde12]   | I+O       | central     | load, policy      | SP                 | 7     | 2 periods | DC    |
| [Yu09]       | I         | none        | load, wind        | chance MINP        | 24    | 1 period  | DC    |
| [Zhang12]    | I+O       | none        | none              | MINP               | 118   | 10 yrs    | DC    |
| [Zhao09]     | I +L      | uncertainty | load, fuel, GEP   | MINP               | 14    | 1 period  | DC    |
| This model   | I+O+L     | uncertainty | GEP, policy, fuel | min-max-min        | 240   | 20 yrs    | DC    |

I: Investment cost. O: Operations cost. L: Load curtailment. GEP: Generation expansion planning. SP: Stochastic programming.

#### **Outline**

Background

Proposed approach

Case study



### Proposed model

- Planning horizon: Multiple decision-making periods
- Decisions: Candidate transmission lines
- Uncertainty: Candidate generators investment and retirement, gas prices, and policies
- Objective: Minimize cost (investment, operations, and load-curtailment costs) under the worst case scenario

|          | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | $s_6$ | $s_7$ | $s_8$ | $s_9$ | $s_{10}$ | $s_{11}$ | $s_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|
| $d_1$    | 1     | 4     | 8     | 4     | 8     | 3     | 5     | 9     | 6     | 2        | 3        | 6        |
| $d_2$    | 9     | 9     | 6     | 1     | 4     | 4     | 3     | 7     | 4     | 3        | 9        | 3        |
| $d_3$    | 1     | 2     | 4     | 3     | 7     | 6     | 7     | 5     | 4     | 5        | 4        | 6        |
| $d_4$    | 7     | 3     | 5     | 9     | 4     | 1     | 2     | 4     | 5     | 3        | 2        | 7        |
| $d_5$    | 8     | 2     | 4     | 5     | 1     | 1     | 7     | 5     | 4     | 8        | 9        | 2        |
| $d_6$    | 8     | 2     | 1     | 5     | 2     | 2     | 2     | 3     | 9     | 2        | 9        | 2        |
| $d_7$    | 1     | 8     | 3     | 4     | 7     | 6     | 4     | 5     | 2     | 3        | 4        | 3        |
| $d_8$    | 4     | 6     | 2     | 9     | 9     | 7     | 6     | 5     | 5     | 2        | 2        | 3        |
| $d_9$    | 3     | 5     | 2     | 4     | 6     | 6     | 8     | 8     | 6     | 3        | 3        | 4        |
| $d_{10}$ | 8     | 2     | 3     | 2     | 1     | 5     | 1     | 8     | 6     | 4        | 4        | 5        |

|          | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | $s_6$ | $s_7$ | $s_8$ | $s_9$ | $s_{10}$ | $s_{11}$ | $s_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|
| $d_1$    | 1     | 4     | 8     | 4     | 8     | 3     | 5     | 9     | 6     | 2        | 3        | 6        |
| $d_2$    | 9     | 9     | 6     | 1     | 4     | 4     | 3     | 7     | 4     | 3        | 9        | 3        |
| $d_3$    | 1     | 2     | 4     | 3     | 7     | 6     | 7     | 5     | 4     | 5        | 4        | 6        |
| $d_4$    | 7     | 3     | 5     | 9     | 4     | 1     | 2     | 4     | 5     | 3        | 2        | 7        |
| $d_5$    | 8     | 2     | 4     | 5     | 1     | 1     | 7     | 5     | 4     | 8        | 9        | 2        |
| $d_6$    | 8     | 2     | 1     | 5     | 2     | 2     | 2     | 3     | 9     | 2        | 9        | 2        |
| $d_7$    | 1     | 8     | 3     | 4     | 7     | 6     | 4     | 5     | 2     | 3        | 4        | 3        |
| $d_8$    | 4     | 6     | 2     | 9     | 9     | 7     | 6     | 5     | 5     | 2        | 2        | 3        |
| $d_9$    | 3     | 5     | 2     | 4     | 6     | 6     | 8     | 8     | 6     | 3        | 3        | 4        |
| $d_{10}$ | 8     | 2     | 3     | 2     | 1     | 5     | 1     | 8     | 6     | 4        | 4        | 5        |

|          | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | $s_6$ | $s_7$ | $s_8$ | $s_9$ | $s_{10}$ | $s_{11}$ | $s_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|
| $d_1$    | 1     | 4     | 8     | 4     | 8     | 3     | 5     | 9     | 6     | 2        | 3        | 6        |
| $d_2$    | 9     | 9     | 6     | 1     | 4     | 4     | 3     | 7     | 4     | 3        | 9        | 3        |
| $d_3$    | 1     | 2     | 4     | 3     | 7     | 6     | 7     | 5     | 4     | 5        | 4        | 6        |
| $d_4$    | 7     | 3     | 5     | 9     | 4     | 1     | 2     | 4     | 5     | 3        | 2        | 7        |
| $d_5$    | 8     | 2     | 4     | 5     | 1     | 1     | 7     | 5     | 4     | 8        | 9        | 2        |
| $d_6$    | 8     | 2     | 1     | 5     | 2     | 2     | 2     | 3     | 9     | 2        | 9        | 2        |
| $d_7$    | 1     | 8     | 3     | 4     | 7     | 6     | 4     | 5     | 2     | 3        | 4        | 3        |
| $d_8$    | 4     | 6     | 2     | 9     | 9     | 7     | 6     | 5     | 5     | 2        | 2        | 3        |
| $d_9$    | 3     | 5     | 2     | 4     | 6     | 6     | 8     | 8     | 6     | 3        | 3        | 4        |
| $d_{10}$ | 8     | 2     | 3     | 2     | 1     | 5     | 1     | 8     | 6     | 4        | 4        | 5        |

|          | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | $s_6$ | $s_7$ | $s_8$ | $s_9$ | $s_{10}$ | $s_{11}$ | $s_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|
| $d_1$    | 1     | 4     | 8     | 4     | 8     | 3     | 5     | 9     | 6     | 2        | 3        | 6        |
| $d_2$    | 9     | 9     | 6     | 1     | 4     | 4     | 3     | 7     | 4     | 3        | 9        | 3        |
| $d_3$    | 1     | 2     | 4     | 3     | 7     | 6     | 7     | 5     | 4     | 5        | 4        | 6        |
| $d_4$    | 7     | 3     | 5     | 9     | 4     | 1     | 2     | 4     | 5     | 3        | 2        | 7        |
| $d_5$    | 8     | 2     | 4     | 5     | 1     | 1     | 7     | 5     | 4     | 8        | 9        | 2        |
| $d_6$    | 8     | 2     | 1     | 5     | 2     | 2     | 2     | 3     | 9     | 2        | 9        | 2        |
| $d_7$    | 1     | 8     | 3     | 4     | 7     | 6     | 4     | 5     | 2     | 3        | 4        | 3        |
| $d_8$    | 4     | 6     | 2     | 9     | 9     | 7     | 6     | 5     | 5     | 2        | 2        | 3        |
| $d_9$    | 3     | 5     | 2     | 4     | 6     | 6     | 8     | 8     | 6     | 3        | 3        | 4        |
| $d_{10}$ | 8     | 2     | 3     | 2     | 1     | 5     | 1     | 8     | 6     | 4        | 4        | 5        |

• Decision space:  $3 \times 10^{12}$ 

• Scenario space:  $1 \times 10^{49}$ 

### Trilevel modeling framework



#### Trilevel formulation

$$\min_{x \in \mathcal{X}} \left\{ C^{\mathsf{I}}(x) + \max_{g \in \mathcal{G}} \min_{z \in \mathcal{Z}(x,g)} C^{\mathsf{O}}(x,g,z) \right\}$$

- $x \in \mathcal{X}$ : Transmission planning decisions, upper level
- $C^{l}(x)$ : Investment cost
- $g \in \mathcal{G}$ : Generation scenarios, middle level
- $z \in \mathcal{Z}(x,g)$ : Operations decisions, lower level
- ullet  $C^{\mathbf{O}}(x,g,z)$ : Operations and load curtailment cost

## Algorithm - Motivation

$$\min_{x \in \mathcal{X}} \left\{ C^{\mathsf{I}}(x) + \max_{g \in \mathcal{G}} \min_{z \in \mathcal{Z}(x,g)} C^{\mathsf{O}}(x,g,z) \right\}$$

1

$$\min_{x \in \mathcal{X}, z(g) \in \mathcal{Z}(x,g)} \left\{ C^{\mathsf{I}}(x) + \zeta : \zeta \ge C^{\mathsf{O}}(x,g,z(g)), \forall g \in \mathcal{G} \right\}$$

For any  $\hat{\mathcal{G}} \subseteq \mathcal{G}$ , the following is a relaxation.

$$\min_{x \in \mathcal{X}, z(g) \in \mathcal{Z}(x,g)} \left\{ C^{\mathsf{I}}(x) + \zeta : \zeta \ge C^{\mathsf{O}}(x,g,z(g)), \forall g \in \hat{\mathcal{G}} \right\}$$

# Algorithm - Steps

**Step 0**: Initialize  $\hat{\mathcal{G}} \subseteq \mathcal{G}$  and go to Step 1.

**Step 1**: Solve the following, get optimal  $x^{R}$ , and go to Step 2.

$$\min_{x \in \mathcal{X}, z(g) \in \mathcal{Z}(x,g)} \left\{ C^{\mathsf{I}}(x) + \zeta : \zeta \ge C^{\mathsf{O}}(x,g,z(g)), \forall g \in \hat{\mathcal{G}} \right\}$$

**Step 2**: Solve the following and get optimal  $g^{W}$ .

$$\max_{g \in \mathcal{G}} \min_{z \in \mathcal{Z}(x^{\mathsf{R}}, g)} C^{\mathsf{O}}(x^{\mathsf{R}}, g, z)$$

```
\begin{array}{l} \text{if } g^{\textit{W}} \in \hat{\mathcal{G}} \text{ then} \\ | & \text{Stop. } x^{\text{R}} \text{ is optimal.} \\ \text{else} \\ | & \text{Update } \hat{\mathcal{G}} \leftarrow \hat{\mathcal{G}} \cup \{g^{\text{W}}\} \text{ and go to Step 1.} \\ \text{end} \end{array}
```

|          | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | $s_6$ | 87 | $s_8$ | $s_9$ | s <sub>10</sub> | $s_{11}$ | $s_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|----|-------|-------|-----------------|----------|----------|
| $d_1$    | 1     | 4     | 8     | 4     | 8     | 3     | 5  | 9     | 6     | 2               | 3        | 6        |
| $d_2$    | 9     | 9     | 6     | 1     | 4     | 4     | 3  | 7     | 4     | 3               | 9        | 3        |
| $d_3$    | 1     | 2     | 4     | 3     | 7     | 6     | 7  | 5     | 4     | 5               | 4        | 6        |
| $d_4$    | 7     | 3     | 5     | 9     | 4     | 1     | 2  | 4     | 5     | 3               | 2        | 7        |
| $d_5$    | 8     | 2     | 4     | 5     | 1     | 1     | 7  | 5     | 4     | 8               | 9        | 2        |
| $d_6$    | 8     | 2     | 1     | 5     | 2     | 2     | 2  | 3     | 9     | 2               | 9        | 2        |
| $d_7$    | 1     | 8     | 3     | 4     | 7     | 6     | 4  | 5     | 2     | 3               | 4        | 3        |
| $d_8$    | 4     | 6     | 2     | 9     | 9     | 7     | 6  | 5     | 5     | 2               | 2        | 3        |
| $d_9$    | 3     | 5     | 2     | 4     | 6     | 6     | 8  | 8     | 6     | 3               | 3        | 4        |
| $d_{10}$ | 8     | 2     | 3     | 2     | 1     | 5     | 1  | 8     | 6     | 4               | 4        | 5        |

|          | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | $s_6$ | 87 | $s_8$ | $s_9$ | s <sub>10</sub> | $s_{11}$ | $s_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|----|-------|-------|-----------------|----------|----------|
| $d_1$    | 1     | 4     | 8     | 4     | 8     | 3     | 5  | 9     | 6     | 2               | 3        | 6        |
| $d_2$    | 9     | 9     | 6     | 1     | 4     | 4     | 3  | 7     | 4     | 3               | 9        | 3        |
| $d_3$    | 1     | 2     | 4     | 3     | 7     | 6     | 7  | 5     | 4     | 5               | 4        | 6        |
| $d_4$    | 7     | 3     | 5     | 9     | 4     | 1     | 2  | 4     | 5     | 3               | 2        | 7        |
| $d_5$    | 8     | 2     | 4     | 5     | 1     | 1     | 7  | 5     | 4     | 8               | 9        | 2        |
| $d_6$    | 8     | 2     | 1     | 5     | 2     | 2     | 2  | 3     | 9     | 2               | 9        | 2        |
| $d_7$    | 1     | 8     | 3     | 4     | 7     | 6     | 4  | 5     | 2     | 3               | 4        | 3        |
| $d_8$    | 4     | 6     | 2     | 9     | 9     | 7     | 6  | 5     | 5     | 2               | 2        | 3        |
| $d_9$    | 3     | 5     | 2     | 4     | 6     | 6     | 8  | 8     | 6     | 3               | 3        | 4        |
| $d_{10}$ | 8     | 2     | 3     | 2     | 1     | 5     | 1  | 8     | 6     | 4               | 4        | 5        |

|          | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | $s_6$ | 87 | $s_8$ | $s_9$ | $s_{10}$ | $s_{11}$ | $s_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|----|-------|-------|----------|----------|----------|
| $d_1$    | 1     | 4     | 8     | 4     | 8     | 3     | 5  | 9     | 6     | 2        | 3        | 6        |
| $d_2$    | 9     | 9     | 6     | 1     | 4     | 4     | 3  | 7     | 4     | 3        | 9        | 3        |
| $d_3$    | 1     | 2     | 4     | 3     | 7     | 6     | 7  | 5     | 4     | 5        | 4        | 6        |
| $d_4$    | 7     | 3     | 5     | 9     | 4     | 1     | 2  | 4     | 5     | 3        | 2        | 7        |
| $d_5$    | 8     | 2     | 4     | 5     | 1     | 1     | 7  | 5     | 4     | 8        | 9        | 2        |
| $d_6$    | 8     | 2     | 1     | 5     | 2     | 2     | 2  | 3     | 9     | 2        | 9        | 2        |
| $d_7$    | 1     | 8     | 3     | 4     | 7     | 6     | 4  | 5     | 2     | 3        | 4        | 3        |
| $d_8$    | 4     | 6     | 2     | 9     | 9     | 7     | 6  | 5     | 5     | 2        | 2        | 3        |
| $d_9$    | 3     | 5     | 2     | 4     | 6     | 6     | 8  | 8     | 6     | 3        | 3        | 4        |
| $d_{10}$ | 8     | 2     | 3     | 2     | 1     | 5     | 1  | 8     | 6     | 4        | 4        | 5        |

|          | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | $s_6$ | 87 | $s_8$ | $s_9$ | s <sub>10</sub> | $s_{11}$ | $s_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|----|-------|-------|-----------------|----------|----------|
| $d_1$    | 1     | 4     | 8     | 4     | 8     | 3     | 5  | 9     | 6     | 2               | 3        | 6        |
| $d_2$    | 9     | 9     | 6     | 1     | 4     | 4     | 3  | 7     | 4     | 3               | 9        | 3        |
| $d_3$    | 1     | 2     | 4     | 3     | 7     | 6     | 7  | 5     | 4     | 5               | 4        | 6        |
| $d_4$    | 7     | 3     | 5     | 9     | 4     | 1     | 2  | 4     | 5     | 3               | 2        | 7        |
| $d_5$    | 8     | 2     | 4     | 5     | 1     | 1     | 7  | 5     | 4     | 8               | 9        | 2        |
| $d_6$    | 8     | 2     | 1     | 5     | 2     | 2     | 2  | 3     | 9     | 2               | 9        | 2        |
| $d_7$    | 1     | 8     | 3     | 4     | 7     | 6     | 4  | 5     | 2     | 3               | 4        | 3        |
| $d_8$    | 4     | 6     | 2     | 9     | 9     | 7     | 6  | 5     | 5     | 2               | 2        | 3        |
| $d_9$    | 3     | 5     | 2     | 4     | 6     | 6     | 8  | 8     | 6     | 3               | 3        | 4        |
| $d_{10}$ | 8     | 2     | 3     | 2     | 1     | 5     | 1  | 8     | 6     | 4               | 4        | 5        |

|          | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | $s_6$ | 87 | $s_8$ | $s_9$ | $s_{10}$ | $s_{11}$ | $s_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|----|-------|-------|----------|----------|----------|
| $d_1$    | 1     | 4     | 8     | 4     | 8     | 3     | 5  | 9     | 6     | 2        | 3        | 6        |
| $d_2$    | 9     | 9     | 6     | 1     | 4     | 4     | 3  | 7     | 4     | 3        | 9        | 3        |
| $d_3$    | 1     | 2     | 4     | 3     | 7     | 6     | 7  | 5     | 4     | 5        | 4        | 6        |
| $d_4$    | 7     | 3     | 5     | 9     | 4     | 1     | 2  | 4     | 5     | 3        | 2        | 7        |
| $d_5$    | 8     | 2     | 4     | 5     | 1     | 1     | 7  | 5     | 4     | 8        | 9        | 2        |
| $d_6$    | 8     | 2     | 1     | 5     | 2     | 2     | 2  | 3     | 9     | 2        | 9        | 2        |
| $d_7$    | 1     | 8     | 3     | 4     | 7     | 6     | 4  | 5     | 2     | 3        | 4        | 3        |
| $d_8$    | 4     | 6     | 2     | 9     | 9     | 7     | 6  | 5     | 5     | 2        | 2        | 3        |
| $d_9$    | 3     | 5     | 2     | 4     | 6     | 6     | 8  | 8     | 6     | 3        | 3        | 4        |
| $d_{10}$ | 8     | 2     | 3     | 2     | 1     | 5     | 1  | 8     | 6     | 4        | 4        | 5        |

#### **Outline**

Background

Proposed approach

3 Case study

### WECC 240-bus test system [Price2011]



# WECC 240-bus test system [Munoz14]



### **Assumptions**

- Planning horizon: Four 5-year periods.
- Solution space: 18 candidate lines. More than  $3\times 10^{12}$  (three trillion) feasible solutions.
- Uncertainty space:
  - ▶ GEP: 53 candidate generators for investment and 17 coal generators for retirement. Almost 10<sup>49</sup> scenarios.
  - ▶ Policy: 20% or 40% mandate of new renewables
  - Natural gas prices: Low or high
  - Demand: Constant 0.1% annual load growth [EIA 2015].

#### 240 buses



#### 448 lines



#### **Demand**



### **Existing generators**



# Candidate generators and transmission lines



#### Four futures

- Future 1: 20% new renewables and high gas prices
- Future 2: 20% new renewables and low gas prices
- Future 3: 40% new renewables and high gas prices
- Future 4: 40% new renewables and low gas prices

### Six transmission expansion plans

- Plan 1: Optimal under future 1
- Plan 2: Optimal under future 2
- Plan 3: Optimal under future 3
- Plan 4: Optimal under future 4
- Plan 5: Too little and too late investment
- Plan 6: Too much and too early investment

# Six transmission plans



#### Twelve scenarios



### Investment, operations, and load curtailment costs



### Summary

- Uncertainty in generator investment and retirement
- Robust optimization model for assessment of transmission planning
- Trilevel optimization model and algorithm
- New visualization techniques
- Bokan Chen and Lizhi Wang, "Robust transmission planning under uncertain generation investment and retirement," to appear in IEEE Transactions on Power Systems.

## Thank you



- Lizhi Wang
- Associate Professor
- Iowa State University
- Izwang@iastate.edu
- Izwang.public.iastate.edu