Synthetic Power Grid Models: What are They, How They're Made, and Why They Matter

Tom Overbye
University of Illinois at Urbana-Champaign

(overbye@illinois.edu)

PSERC Webinar March 15, 2016

Acknowledgments and Thanks

- Work presented in these slides is based on the results of several projects including
 - PSERC S-62G (Seamless Bulk Electric Grid Management with EPRI)
 - PSERC T-57 (High Impact)
 - BPA project TIP 353 (Improving Operator Situation Awareness by PMU Data Visualization
 - ARPA-E Grid Data Synthetic Data for Power Grid R&D
- Support is gratefully acknowledged!
 - Thanks also to Adam Birchfield, Kathleen Gegner, Ti Xu, Komal Shetye, Richard Macwan, Profs Bob Thomas, Anna Scaglione, Zhifang Wang and Ray Zimmerman

Presentation Overview

- Access to data about the actual power grid is often restricted because of requirements for data confidentiality (e.g., critical energy infrastructure)
 - Focus here is on high voltage power flow, optimal power flow, transient stability models, SCADA, PMUs
 - Some data is public, some is available by NDAs, and some is essentially unavailable to those outside of power system control centers
- Focus of talk is on the creation of synthetic (fictional) models that mimic the complexity of the actual grid cases but will contain no confidential data and can be publicly available

A Few Initial Thoughts

- The reason why this matters is to help spur innovation in the electric grid software
 - Algorithms tested on synthetic models applied to actual
- In 2000 the NAE named Electrification (the vast networks of electricity that power the developed world) as the top engineering technology of the 20th century
 - automobiles (2), airplanes (3), water (4), electronics (5)
- Our challenge in this century is to develop a sustainable and resilient electric infrastructure for the entire world

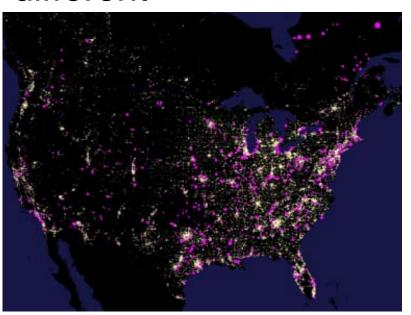
A Few Initial Thoughts

- "All models are wrong but some are useful,"
 George Box, Empirical Model-Building and Response
 Surfaces, (1987, p. 424)
- "The use of nondisclosure agreements or NDA's to obtain data, while useful in many instances, is not useful if the world community is to engage in research that adheres to the scientific principle of reproducibility of results by other qualified researchers and to use important findings to advance their own work"

PSERC Founding Director Bob Thomas, 2015

Overall Goals

- The development of entirely synthetic transmission system models and scenarios that match the complexity and variety of the actual grid
 - Models that incorporate both the average characteristics and outlier characteristics of the actual grid
 - Models and scenarios suitable for security constrained optimal power flow (SCOPF) studies; they will also be set for use in transient stability and geomagnetic disturbance analysis
 - All models will have embedded geographic coordinates
 - Scenarios will be SCOPF validated
- We want to partner with industry!


The Need

- Few, if any, of the existing public models (such as the IEEE 300 bus) match the complexity of the models used for actual large-scale grids
- Issues include size, with the Eastern Interconnect models now more than 70,000 buses, and also model complexity
 - Public models also lack extra data like transient stability
- Innovation is hindered by not being able to compare results for complex models

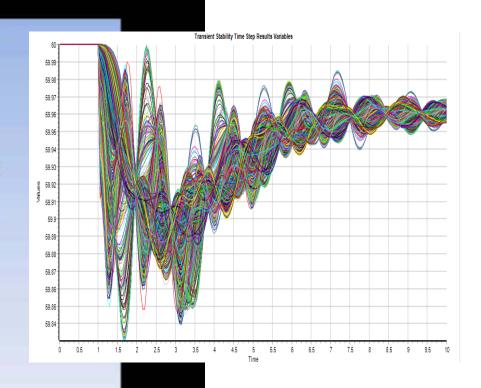
being able to compare results for complex models

What Makes a Model Real?

- The challenge is to capture the essence of what makes actual grid models different
 - Actual grid models are quite diverse
- Statistics can be used to quantify some of the characteristics
 - topology, parameters for buses, generators, loads,
 - transmission lines, transformers, switched shunts, transient stability and GMD parameters
- System-wide metrics are also needed

Complexity Examples

- A recent 76,000 bus Eastern Interconnect (EI) power flow model has 27,622 transformers including 98 phase shifters
 - Impedance correction tables are used for 351, including about 2/3 of the phase shifters; tables can change the impedance by more than two times over the tap range
- The voltage magnitude is controlled at about 19,000 buses (by Gens, LTCs, switched shunts)
 - 94% regulate their own terminals with about 1100 doing remote regulation. Of this group 572 are regulated by two or more devices, 277 by three or more, twelve by eight or more, and three by twelve devices!


How to Make Realistic, Geographically-Based, Synthetic Models

- Our approach is to make models that look real and familiar by siting these synthetic models in North America, and serving a population density the mimics that of North America
 - The transmission grid is, however, totally fictitious
- Goal is to leverage widely available public data:
 - Geography
 - Population density (easily available by post office)
 - Load by utility (FERC 714) and state-wide averages
 - Existing and planned generation: Form EIA-860 contains information about generators 1 MW and larger; data includes location, capacity and fuel type

Example: 2100 Bus Texas Case Frequency Response

Synthetic Texas Model Example Transient Stability Contingency

Frequency Deviation Contour Movie Created Using PowerWorld Simulator v19 Speed: One Half Real-Time March, 2016

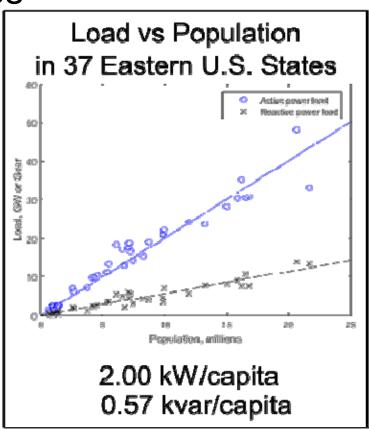
EIA-860 Generator Data

Online at www.eia.gov/electricity/data/eia860/

	m EIA-860 Data - Schedule	Plant Code	Plant Name	Street Address	City			County	Latitude		NERC Region	Balancing Authority Code	Balancing Authority Name	Name of Water Source	Primary Purpose (NAICS Code)
	te & Lyle Ingredients Americas Inc		Tate & Lyle Decatur Plant Cogen	2200 East Eldorado St	Decatur	L		Macon	39.849190	-88.931944	SERC	MISO	System Operator, Inc	Municipality	311
	te & Lyle Ingredients Americas Inc		Sagamore Plant Cogeneration	2245 Sagamorc Parkway North	Lafayette	IN		Tippecanoe	40.443900	-86.860000	RFC	MISO	System Operator, Inc	Wells	311
	S Shady Point LLC		AES Shady Point LLC	PO Box 1740	Panama	OK		Le Flore	35.193100	-94.645800	SPP	SWPP	Southwest Power Pool	Poteau River	22
	eenidge Generation Holdings LLC		Greenidge Generation LLC	590 Plant Road	Dresden	NY		Yates	42.678900	-76.948300	NPCC	NYIS	New York Independent System Operator	Seneca Lake	22
	y of Abbeville - (SC)		Rocky River (SC)	146 Power Dam Lane	Iva	SC		Anderson	34.257200	-82.609700	SERC	DUK	Duke Energy Carolinas	Lake Secession	22
	S WR Ltd Partnership		AES Warrior Run Cogeneration Facility	11600 Mexico Farms Rd, S.E.	Cumberland	MD		Allegany	39.595171	-78.745333	RFC	PJM	PJM Interconnection, LLC	City Of Cumberland Water Suppl	22
_	CE Cogeneration Co		ACE Cogeneration Facility	12801 Mariposa St.	Trona	CA		San Bernardino	35.765767	-117.383584	WECC	CISO	California Independent System Operator	Wells	22
	da Cogeneration Ltd Partnership		Ada Cogeneration LP	7575 Fulton Street East	ADA	MI	49355		42.962672	-85.494071	RFC	MISO	System Operator, Inc.	City Water	22
	& N Electric Coop		Tangier	4463 Janders Rd	Tangier	VA		Accomack	37.827700	-75.991500	RFC RFC	PJM	PJM Interconnection, LLC	Wells	22
	& N Electric Coop		Smith Island	20697 Caleb Jones Rd	Ewell	MD	_	Somerset	37.993300	-76.035300	NPCC	PJM	PJM Interconnection, LLC	Wells	22
	anite Ridge Energy LLC		Granite Ridge	21 North Wentworth Avenue 500 N Commercial	Londonderry	NH		Rockingham	42.904200 42.665941	-71.426100	MRO	ISNE	ISO New England Inc.	City of Manchester POTW Well	22 311
109 Ag	Processing Inc	10223	AG Processing Inc	500 N Commercial	Eagle Grove	IA	50533	Wright	42.665941	-93.902606	MRU	MISO	System Operator, Inc Midcontinent Independent Transmission	vveii	311
135 Ag	grilectric Power Partners Ltd	10593	Agrilectric Power Partners Ltd	3063 Hwy. 397	Lake Charles	LA	70615	Calcasieu	30.201200	-93.126900	SERC	MISO	System Operator, Inc	Rainwater Cooling	22
142 AE	S Beaver Valley	10676	Valley	394 Frankfort Rd.	Monaca	PA	15061	Beaver	40.657218	-80.353929	RFC	PJM	PJM Interconnection, LLC	Nova Chemical Co (Ohio River)	22
150 Ac	frian Public Utilities Comm	1956	Adrian	20 Main Avenue	Adrian	MN	56110	NOBLES	43.639167	-95.943611	MRO	WAUE	Great Plains East	N/A	22
164 AE	RA Energy LLC	50752	South Belridge Cogeneration Facility	19590 Seventh Standard Rd	McKittrick	CA	93251	Kern	35.438611	-119.707500	WECC	CISO	California Independent System Operator	N/A	211
164 AE	RA Energy LLC	52077	Lost Hills Cogeneration Plant	Holloway Rd and Highway 46	Lost Hills	CA	93251	Kern	35.666111	-119.766944	WECC	CISO	California Independent System Operator	N/A	211
164 AE	RA Energy LLC	55185	Aera South Belridge Cogen Facility	Highway 33 and Lost Hills Rd	McKittrick	CA	93251	Kern	35.429200	-119.686400	WECC	CISO	California Independent System Operator	N/A	211
177 AE	S Hawaii Inc	10673	AES Hawaii	91-086 Kaomi Loop	Kapolei	HI	96707	Honolulu	21.303419	-158.106528	HICC			Wells	22
	S Placerita Inc	10677	CES Placerita Power Plant	20885 Placerita Canyon Road	Santa Clarita	CA	91321	Los Angeles	34.380100	-118.499900	WECC	CISO	California Independent System Operator	Underground water well	22
179 Ag	grium US Inc	54452	Agrium Kenai Nitrogen Operations	Mile 21.5 Kenai Spur Highway	Kenai	AK	99611	Kenai Peninsula	60.673200	-151.378400	ASCC			Wells	325311
189 Po	werSouth Energy Cooperative	53	Gantt	28605 Powerhouse Road	Andalusia	AL	36421	Covington	31.403300	-86.479469	SERC	AEC	PowerSouth Energy Cooperative	Conecuh River	22
189 Po	werSouth Energy Cooperative	55	Point A	25482 Firetower Lane	Andalusia	AL	36421	Covington	31.361146	-86.518307	SERC	AEC	PowerSouth Energy Cooperative	Conecuh River	22
189 Po	werSouth Energy Cooperative	56	Charles R Lowman	Carson Road	Leroy	AL	36548	Washington	31.488019	-87.910747	SERC	AEC	PowerSouth Energy Cooperative	Tombigbee River	22
	werSouth Ene														22
	werSouth Ene			→ •		-			-		-	•	4 4		22
	werSouth Ene	00	0114 00	0 110 + 0	100	120		ntin		O T 740	+h c	110	modala	100	22
194 All	buquerque City		: OH 90	at is io		KC	•	*	$\mathbf{c}_{\mathbf{I}}\mathbf{v}$	SVI	11116		models,		22
		-	our go		1110								iii GGIB,		22
	abama Power (•						•	•				_	22
	abama Power (٠,٠						•11 1		1		T 7	1		22
	abama Power 🗘 🗘 🕶 1 (C 1	no com	many r	1911	ΔC	XX	71 r	1	1000		M/A	may be		22
	abama Power	3 U.		ipaily 1	ialli	$\mathbf{C}\mathbf{S}$	V	/ III l	JUL	10CU	•	VV C	may UC		22
	abama rower			1											22
															22
195 Al												_	es as wel		22

How to Make Realistic Synthetic Models

- First step is to select a desired size (bus count) and geographic footprint
 - These are two independent parameters: for example, geographically large with a small number of buses
 - Our approach does not require that we use actual geography; however most, if not all, of our models will
 - Requires an assumption on underlying load density
 - Nominal transmission voltages need to be selected (e.g., 500/230/115 kV); we will allow multiple levels
 - On larger models the geographic footprint is divided into balancing authority areas and fictitious owners


How to Make Realistic Synthetic Models: Substation Selection

- The next step is to site the substations
 - Buses are located in substations; number of buses in a substation can vary widely
 - Most substations have load and/or generation; number of buses can depend on model assumptions, such as whether generator step-up transformers are modeled
- Substation are sited geographically primarily in order to meet load and generation requirements
 - One approach for the assumed load density is mimic population density as given by zip code information
 - Number of substation depends on the desired model size; in actual models the amount of substation load can widely vary (from 1 MW to more than 500 MW)

How to Make Realistic Synthetic Models: Substation Selection

 In our approach substations are placed geographically at post offices

- The load is proportional to population, taking into account state variation
- Hierarchical clustering is used to reduce the number of substations as needed
- Load is usually attached at lowest-voltage bus

Generator Substation Placement

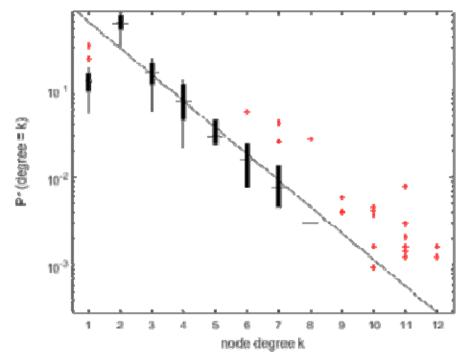
- Based on actual model statistics, some generation is located at existing load substations
- Other plants are combined into generator-only substations
- Generator parameters, including reactive power limits and cost information, are derived from statistics
- Transient stability models are added

Statistics derived from real power system case

Max Mvar	Mvar range
as fraction	as fraction
of MW	of MW
capacity	capacity
0.466	0.588
0.509	0.620
0.560	0.624
0.384	0.433
0.368	0.450
0.213	0.357
	as fraction of MW capacity 0.466 0.509 0.560 0.384 0.368

Substation Voltage Levels

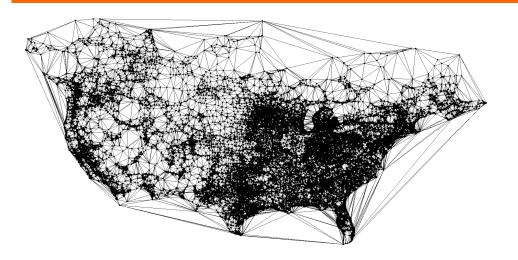
- Each substation now has load/generation defined
 - Statistically about 90% in actual grid have load or gen
- Different system voltage levels are chosen
 - E.g., 500/161, 765/345/138, 500/230/115
- Almost all substations have lower voltage bus
- A percent of substations (e.g.,15%) also include higher voltage buses and transformers
- Higher-voltage substations are iteratively selected with probabilities proportional to load
- All large (> 250 MW) generators are placed at the higher voltage level, but with a GSU

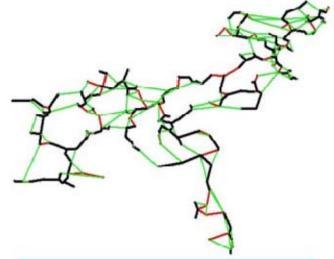

Adding Transmission Lines

- Substations are connected together by transmission lines, matching characteristics of actual models
 - Builds on pioneering work done by PSERC researchers Thomas, Wang and Scaglione
 - Z. Wang, R.J. Thomas, A. Scaglione, "Generating random topology power grids," HICSS-41, HI, Jan 2008
 - Z. Wang, A. Scaglione and R.J. Thomas, "The Node Degree Distribution in Power Grid and Its Topology Robustness under Random and Selective Node Removals", the 1st IEEE International Workshop on Smart Grid Communications, Cape Town, South Africa, May 2010
 - Z. Wang, R.J. Thomas, "On Bus Type Assignments in Random Topology Power Grid Models", HICSS-48, Jan. 2015

Substation Node Degree (Number of Neighbors)

- Need to match statistics for number of connected substations at each voltage level
- Average nodal degree $\langle k \rangle = 2.43$, nearly constant with n for single-voltage networks in EI
- Number of lines $m = \frac{\langle k \rangle n}{2} = 1.22n$
- Node degree distribution appears to be exponential. $Pr(k) = 1.19e^{-0.69k}$

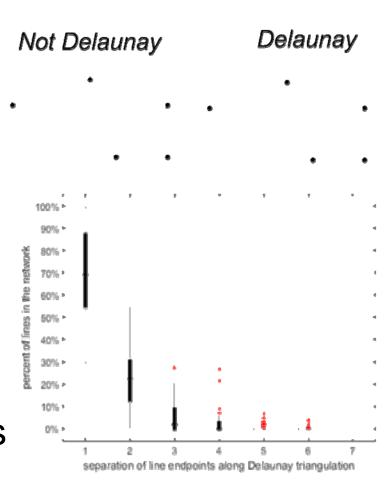

(except for k=1 and 2)



Adding Transmission Lines

- Graph theory considerations are used to determine which substations are connected
 - An approach is to do Delaunay triangulation along with minimum spanning tree (MST) analysis

Image shows Delaunay triangulation of 42,000 North America substations; statistics only consider single voltage levels; computationally fast (order n ln(n))


MST for the EI 500 kV grid; black actual on MST, green other

Adding Transmission Lines

- In general, transmission line topologies are totally connected, and remain so with one node removed
- Typical actual power system contains 60% of its substations' minimum spanning tree (MST) at each nominal voltage level (percent varies by voltage level)
- Approach is to match the MST percentage
- Then other lines are added to match the typical average (1.22n edges per bus)

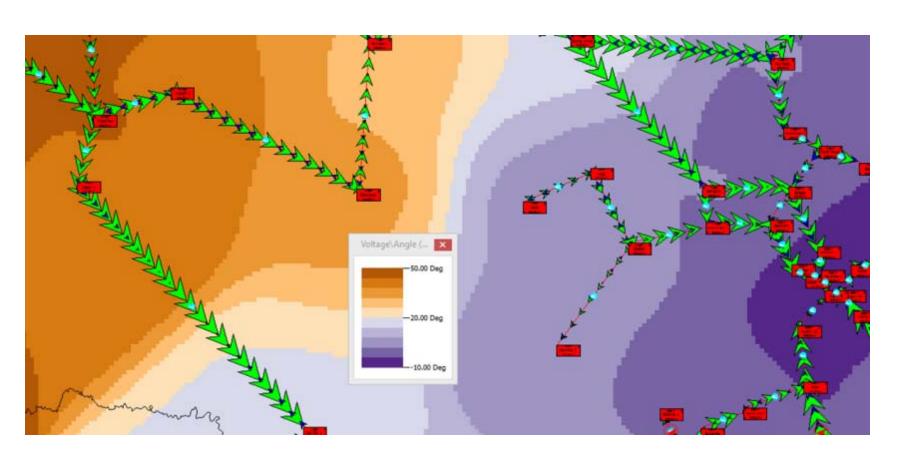
Using Delaunay Triangulation to Add Additional Lines

- Delaunay triangulation
 - No triangle's circumcircle contains another point
 - Nearest few neighbors are connected
 - Statistics (c) and (l) match regular lattice and actual grid
- Contains 70% of real lines on average, and 98% separated by 3 hops or less
- We select subset out of Delaunay's 3n segments

Transmission Line Parameters

- Transmission line parameters from EPRI & ACSR guides
- Different configurations for each voltage level:

Example: 345 kV lines										
Conductor	Tower Type	X, pu, per 100 miles	X/R ratio	B, pu, per 100 miles	MVA limit					
	Steel Horizontal	0.049	10.40	0.850	1207					
Martin 2-bundle	Steel Triangular	0.046	9.61	0.922	1207					
_ ballale	Wood Horizontal	0.050	10.53	0.839	1207					
	Steel Horizontal	0.049	12.01	0.857	1327					
Finch 2-bundle	Steel Triangular	0.045	11.09	0.930	1327					
	Wood Horizontal	0.049	12.16	0.846	1327					
	Steel Horizontal	0.048	14.34	0.866	1494					
Cardinal 2-bundle	Steel Triangular	0.045	13.23	0.941	1494					
	Wood Horizontal	0.049	14.52	0.855	1494					


These parameters are validated against real transmission lines

Iterative Updates to Obtain a Feasible DC Power Flow Solution

- A connected graph allows dc power flow solutions
- Iteratively add lines to obtain a dc power flow with no line flow violations
- Candidate lines are segments of the Delaunay triangulation or near neighbors
- Place total of 1.22n lines per voltage level
- Select lines based on:
 - Voltage angle gradient, indicating likely power flow
 - Avoid radial substations
 - Encourage parallel circuits to overloaded lines
 - Forbid lines exceeding a maximum length

Example: Transmission Line Placement

 Based on voltage angle gradient, this might be a good location for a transmission line

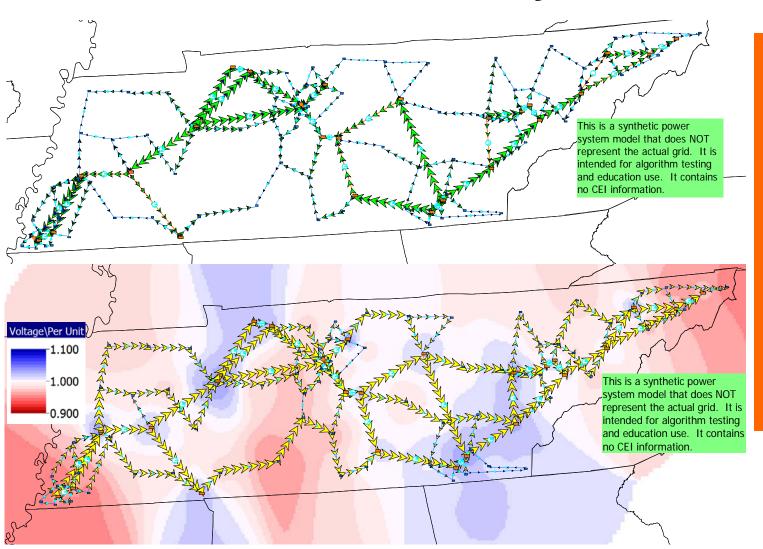
Reactive Compensation and Additional Model Complexity

- The next step is the specification of the generator PV bus setpoints, the inclusion of additional reactive power control devices such as switched shunts and LTC control, and the inclusion of additional complexities such tap dependent impedances (XF correction tables)
 - Realistic remote generator PV control will be modeled, including reactive power sharing among a number of generator
 - A hypothesis we are considering is that the difficulties encountered with actual models compared to public models, such as the IEEE 118 bus case, are due to these complexities

Model Creation Methodology: Inclusion of Additional Parameters

 The final step in the creation of the models themselves will be the inclusion of the models necessary to do transient stability and GMD analysis

Model Class	Object Type	Active and Online Count	Active Count	Inactive Count
Load Relay	LSDT9	2411	2422	
Machine Model	GENROU	894	1211	1
Machine Model	GENTPS	862	1136	2
Stabilizer	PSS2A	763	932	. 1
Gavernor	GG0V1	580	891	3
Exciter	EXST1 GE	607	802	
Machine Model	GENTRE	572	720	3
Load Characterists	e WSCC	511	511	
Over Excitation Lie	N OEL1	420	510	
Exciter	EXST4B	292	359	
Exciter	EXDCT	206	257	
Governor	HEERGT GE	195	258	
Governor	FRIGOV	190	232	
Governor	IEEEG3_GE	100	240	
Exciter	REXS.	162	248	
Load Relay	LSDf2	157	157	
Line Relay Model	TURKS	131	136	
Stabilizer	DEFEST	128	154	
Stabilizer	WSCCST	122	143	
Exciter	EXACT	121	146	
Evoter	EXACSB .	318	168	
Governor	HVG3	104	128	
Governor	GPWSCC	90	115	
Stabilizer	PS\$28	85	105	
Governor	HYGOVA	05	106	
Pref Controller	LCF81	74	88	
Exciter	ESSTIA GE	70	88	
Load Relay	LSDT1	66	66	
Entiter	HERETT.	51	58	
Exciter	ESSTAB	50	58	
Governor	PIDGOV	45	56	
Exciter	EXDC4	45	55	
Machine Model	GENCC	40	40	
Encites	EXAC2	37	46	
Stabilizer	P5558	37	49	
Machine Model	MOTORS	35	60	1
Easther	ESDC48	22	16	


As with the other models, parameters

will be set to match the statistics of the actual grid

Images show example transient stability models and parameters

Type	MVA Base	н	D	Ra	Xd	Хq	Xdp	Хар	Xdpp	30	Tdop	Tqop	Tdopp	Тдорр	51	512	RComp	XСотр
GENROU	58.822	4.22	0	0	1.73	1.6	0.285	0.8	0.2036	0.1	7.1	2	0.03	0.2	0.194	0.4597	0	0
GENROU	58.822	4.22	0	0	1.73	1.6	0.285	0.8	0.2036	0.1	7.1	. 2	0.03	0.2	0.194	0.4597	0	0
GENROU	88.235	4.22	0	- 0	1.75	1.52	0.24	0.7	0.2036	0.1	7	2	0.03	0.1	0.2196	0.6399	0	0
GENROU	410	3.71	- 0	0.004	1.7	1.4	0.24	0.33	0.21	0.17	5.5	0.51	0.05	0.06	0.1603	0.4861	. 0	. 0
GENROU	410	3.8	. 0	0.002	1.85	1.4	9,3088	0.33	0.2573	0.17	6.76	0.51	0.05	0.06	0.113	0.4049	0	
GENROU	616.7	2.15	0	0	1.57	1.47	0.28	0.453	0.25	0.145	4.2	0.494	0.05	0.0583	0.135	0.432	0	. 0
GENROU	616.7	2.15	. 0	0	1.57	1.47	0.28	0.453	0.25	0.145	4	0.494	0.05	0.0583	0.135	0.432	0	
GENROU	234	4.87		0	2.25	1.825	0.275	0.85	0.2264	0.15	9	0.9	0.036	0.07	0.09	0.2687	0	. 0
GENROU	234	4.87	0	0	2.25	1.825	0.275	0.85	0.2264	0.15	. 9	0.9	0.036	0.07	0.09	0.2687	0	
GENROU	373	2,91	: 0	. 0	2.27	1.7	0.33	0.85	0.27	0.231	7.5	0.9	0.036	0.07	0.065	0.5795	0	. 0
GENROU	143.6	4.35	0	0.0028	1,445	1,382	0.22	0.375	0.185	0.11	5,97	0.52	0.019	0.086	0.0541	0.1602	. 0	
GENROU	189	4.8	- 0	0.0025	1.77	1.662	0.215	0.4	0.195	0.12	7	0.519	0.055	0.083	0.0697	0.3761	0	
GENROU	60	2,18	- 0	0.003	2.3	2.25	0.28	1.1	0.226	0.12	6.5	3	0.03	0.2	0.0727	0.3108	. 0	-0.05
GENROU	60	2,18	. 0	0.003	7.3	2.25	0.28	1.1	0.226	0.12	6.5	- 1	0.03	0.2	0.0727	0.3108	0	-0.05
GENROU	191	5.7	0	0.003	1.47	1.4	0.212	0.4	0.16	0.12	7.7	0.54	0.039	0.083	0.057	0.441	0	
GENROU	89.5	6.96	- 0	0	2.04	1.8	0.278	0.7	0.239	0.19	8.2	1	0.05	0.05	0.1	0.327	. 0	
GENROU	96	3.8	. 0	0	1.6	1.48	0.22	0.9	0.173	0.16	6	0.6	0.03	0.06	0.104	0.516	0	0
GENROU	96	3.54	0	0.	1.6	1.5	0.226	0.4	0.19	0.15	8	1	0.025	0.0255	0.094	0.43	0	. 0
GENROU	135.3	3.21	0	0	1.56	1.4	0.255	0.5	0.22	0.15	8.5	1	0.01	0.09	0.045	0.5557	0	0
GENROU	94.444	6.6	0	0	1.54	1.45	0.324	9.7	0.26	0.2			0.05	0.05	0.2125	1.0058	0	
GENROU	94.444	9.6	0	0	1.54	1.45	0.324	0.7	0.26	0.2			0.05	0.05	0.2125	1.0058	0	
GENROU	133-333	3.58	. 0	0	1.48	1.2	0.26	0.45	0.16	0.144	10.5	1	0.05	0.05	0.1368	0.676	0	
GENROU	58-822	4.7	0	0	1.55	1.1	0.256	0.4	0.181	0.15	6.7	1	0.03	0.1	0.16	0.5	0	
GENROU	58.825	1	0	0	1.7	1.3	0.25	0.6	0.22	0.19	7	0.4	0.025	0.05	0.1806	0.5848	0	
GENROU	185	4.43	0	- 0	1.5	1.3	0.16	0.6	0.14	0.1	10	0.7	0.05	0.08	0.0578	0.3644	0	. 0
GENROU	101.8	5.63	0	0.003	2.03	1.856	0.16	0.3	0.12	0.00	12.5	3.9	0.05	0.05	0.162	0.789	0	
GENROU	101.8	5.63	0	0.003	2.03	1.856	0.16	0.3	0.12	0.06	12.5	1.9	0.05	0.05	0.162	0.789	0	

Example: 150 Bus Network for GMD Analysis

Images
show
a synthetic
150 bus
model placed
geographically
in Tennessee;
bottom image
shows
response to
an assumed
GMD.

1500 Substation, 2100 Bus Texas Example

Texas geographic footprint

No relationship to actual transmission grid

Nominal 345/115 kV grid

1500 substations,
2092 buses, 282 gens,
2857 branches

 Automatic line placement takes about 70 seconds

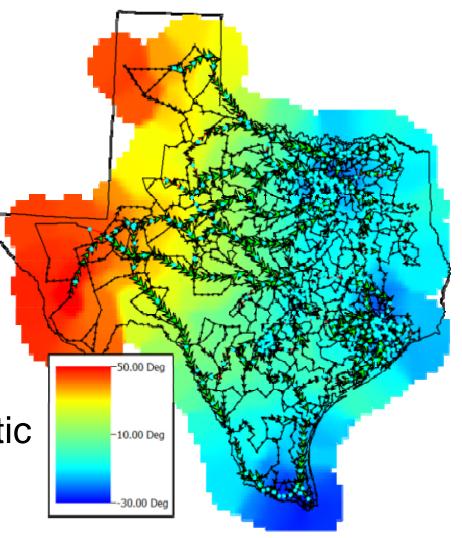
 Currently we are supplementing with manual adjustment for voltage control

Example Case: Initial Generation Dispatch

System divided into 8 areas

 Two areas have more load than generation capacity

 Transactions set up from other areas

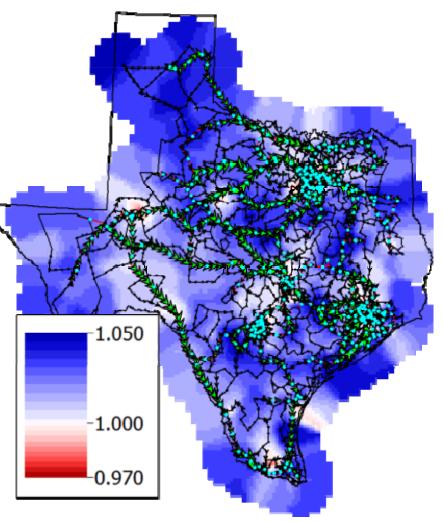

 Generators dispatched proportionally to meet load + transaction commitments

 This is done before lines are placed, so that the algorithm's dc power flow reflects realistic generation dispatch

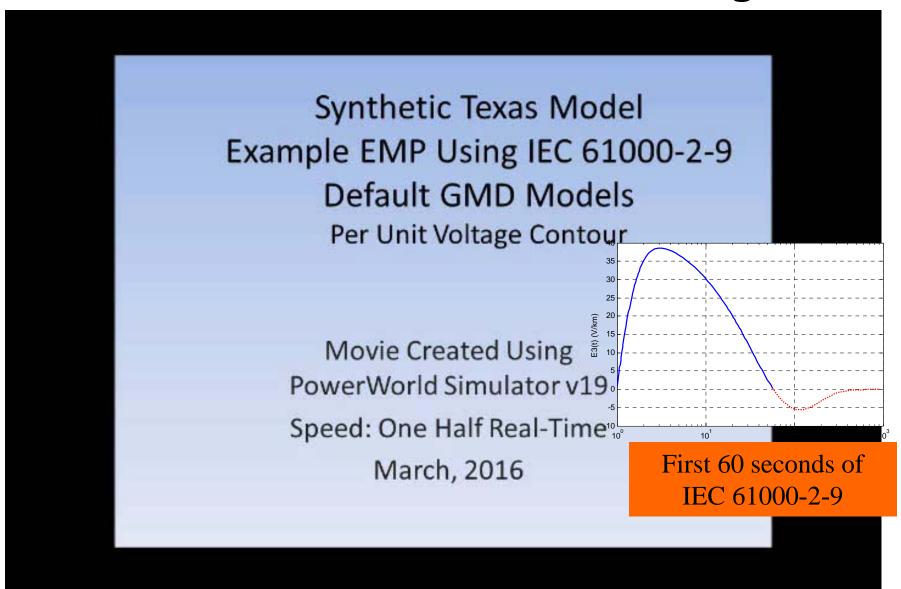
Example Case: Voltage Phase Angle Contour

- Gradual voltage angle gradient
- All branches less than 90% loaded
- Average branch is 28% loaded, matching real cases

 These properties are direct result of automatic line placement without manual intervention



Example Case: Voltage Control


 All voltages within 0.97-1.05 pu in base case

 After line placement algorithm voltages were within 0.9 to 1.1 pu

 Adjustment of generator set points and insertion of 33 shunt capacitor banks in urban areas

Simulating High Impact, Low Frequency Events: Results can be Exchanged!

Synthetic Model Validation

- Key to this research is to demonstrate synthetic models have similar properties of actual grids
- Synthetic models are **not** meant to represent the actual grid, so direct comparison is not appropriate
- Useful metrics are
 - Topological properties, which we meet by design
 - Individual model parameters, which we meet by design
 - Solution algorithm properties, such as power flow convergence
 - Solution results, such as LMPs, amount of congestion, transient stability damping, etc.

Driving Innovation!

- Goal is to publicly release synthetic models of various sizes and complexities
 - Algorithm results from synthetic models can be published without restriction; algorithms can be used confidentially on real models
 - Fully public, anyone can make derivative models; some models will be standardized for comparisons purposes
- Large-scale models can be used to compare software packages
 - Customers and researchers can compare results
 - Visualization research not hindered by confidentiality

Thank You!

Questions?

overbye@illinois.edu

