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Challenges Generated by Renewables

Variability, Impact on Reliability
Creation of High Ramp Rates

CIG: Protection, Stability and Control

Low Voltage Ride Through
Protection

Stability — traditional stability is meaningless



Protection Challenges

Protection of CIG (Converter Interfaced Generation) and associated
circuits and components is challenging due to:

(a) Insufficient separation between fault and load currents caused by
converter interfaced sources,

(b) Large fault contributions from utility side — small fault contributions
from inverter based sources and

(c) Requirement to operate in utility connected mode as well as
islanded mode.

(d) Lack of inertia

These issues are common for wind systems, PV systems and pGrids.



Another Operational Issue:

Deployment of Converter Interfaced Generation (CIG) is ever
increasing (wind, PV, etc.) with many systems reaching more than
50% presently. Stabilization and riding through disturbances is a
problem of increasing significance.

Need for CIG to smoothly follow the oscillations of the system and avoid
excessive transients and activation of transient ride through controls, i.e.
provides stabilization control to the CIG.

Enabling Technoloqy: Dynamic State Estimation based protection which
provides reliable protection and estimation of frequency and rate of
frequency change locally at the inverter as well as at the system using
only local measurements. This information enables supplementary inverter
control for smooth inverter/system synchronization and disturbance ride

through.
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Example of Fault Detection: Comparison of Legacy
Protection and DSE Based Protection
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Table 1: Example pGrid circuit parameters

Object Parameter Value

Line to line voltage 480V

System Fundamental frequency 60 Hz
Length of the monitored circuit 375 feet

Positive (Negative) sequence 0.0957+ j 0.0153 QO

Monitored Circuit i
Zero sequence 0.2186+ ] 0.1555 Q




Imaginary Part (Ohm)
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0.4+

*  Calculated Impedance with asymmetric model

*x  Theoretical Impedance with symmetric model

Zone 2

o3f
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Real Part (Ohm)

0.6

Legacy Protection: Distance Relay

Performance of Legacy
Protection Function

Incorrect non-operation
(mis-operation)

Inherent time delays
due to phasor based
detection circuit
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Operational Stability:

Need for CIG to smoothly follow the oscillations of the system and avoid excessive
transients and activation of transient ride through controls, i.e. provides stabilization
control to the CIG.

Enabling Technoloqy: The setting-less relay provides estimated frequency and
rate of frequency change locally at the inverter as well as at the system using only
local measurements. This information enables supplementary inverter control for
smooth inverter/system synchronization and disturbance ride through.
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Example Test System
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Performance: how accurate f
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Case 1: 1.5 miles — Side 1
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Case 1: 1.5 miles — Side2
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Case 2: 2.5 miles — Side 1
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Case 2: 2.5 miles — Side2
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Case 3: 4 miles — Side 1
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Case 3: 4 miles — Side2
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Summary of Results — f and df/dt

Frequency : 59.98Hz ~ 60.09Hz, Rate of Change: -0.6 ~ 0.6Hz/s
Side 1 Results

Case Line

1 5 mlles ~1.887x10° ~1.827x10°Hz -1.24x10™* ~-2.602x10°Hz /s
-2.5 miles —2.005x10™ ~1.807x10°Hz -1.28x10™ ~9.340x10°Hz/s
4 miles —1.853x10° ~1.803x10°Hz -1.35x10"* ~4.507x10°Hz/s

Side 2 Results

Case Line
1

1.5 miles —6513x10°~1.77x10*Hz -1.144x102~1.049x103Hz/s
2.5 miles -9464x10°~2.82x10*Hz -1.906x107°~1.689x10°3Hz/s
4 miles —129x10* ~451x10"Hz —-2.896x107° ~2.751x10°3Hz/s
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CIG Performance with
Supplementary Controls



Predictive Inverter Control Enabled
by Dynamic State Estimator
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Frequency-Modulation, Modulation-Index, Phase Angle-Modulation
Controls (P-Q Mode) PWM Controller
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The frequency-modulation control gradually modulates the frequency of converter switching sequences to
slowly synchronize with remote-end transmission and prevent large current transient.

The modulation-index and phase-angle modulation controls modulate the amplitude and phase angle of the
AC output voltage by controlling the duty ratio and start time of switching sequences.



Frequency- and Phase Angle-Modulation Controls
(P-Q Mode)
Switching-Sequence Definition
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Simulation Results:
CIG System without Predictive Inverter Control
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We perform this simulation test for a case that a remote converter-interfaced generation (CIG) is under

frequency oscillation when a local CIG does not have the Predictive Inverter Controller. The frequencies of two CIGs cannot
synchronize with each other, consequently power-factor angle difference oscillates. Thus the CIG systems exceed their
desirable operation constraints. Therefore, CIG system requires the Predictive Inverter Control to minimize the transient.



Simulation Results:
CIG System with Predictive Inverter Control
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We perform this simulation test for a case that a remote converter-interfaced generation (CIG) is under 60+0-13in(2”'t) Hz
frequency oscillation when a local CIG has the Predictive Inverter Controller (P-Q mode: Controlled at 2 MW and 0.5 Mvar).
The frequencies of two CIGs can synchronize with each other and power-factor angle difference is kept within their desirable
operation constraints. Therefore, CIG system with the Predictive Inverter Controller can successively minimize the transient.



Conclusions

As the penetration level of CIG increases, one observes a number of issues
in the normal operation of the system, oscillations among inverters, reduced
fault currents and legacy protection systems failures.

The setting-less protective relay provides reliable protection for system with
converter interfaced generation.

The setting-less relay (dynamic state estimation) also provides the enabling
technology for supplementary sluggish control to limit the oscillations among
inverters and synchronize inverters with the power system and minimize
activation of LVRT logic.

The accuracy of the proposed methods to provide the necessary signals has
been demonstrated.
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