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Presentation Outline

• Brief Overview of PSERC T-51

• Spatio-temporal Correlations among Data Sets

• Case Study 1: Renewable Forecast

• Case Study 2: Synchrophasor dimensionality 

reduction and early anomaly detection

• Concluding Remarks 
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T-51 Project Objectives

• Improved decision-making by utilization of large 

data sets – “Big Data”

• The integration of emerging large-data sets to 

support advanced analytics, to enhance electricity 

system management (planning, operations and 

control)

• Correlation of data in time and space and assuring 

consistent data semantic and syntax
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Big Data in Bulk Power Systems: 

Opportunities and Challenges
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[4] M. Kezunovic, L. Xie, and S. Grijalva, “The role of big data in improving power system operation and protection,” Bulk

Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid (IREP), 2013

IREP Symposium.



T-51 Project Summary

• Project duration: 2013-2015, final report available at 

PSERC

• Use of Big Data for Outage and Asset Management 

(Kezunovic, lead PI)

• Distributed Database for Future Grid (Grijalva and 

Chau)

• Spatio-Temporal Analytics for Renewables (Xie)

• Wind power prediction and its economic benefits

• Solar power prediction and quantified economic benefits
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Growth of Renewable Generation (and Data)
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Renewable Growth in US

 In 2014, renewable energy sources account for 16.28% of total installed U.S.

operating generating capacity.

 Solar, wind, biomass, geothermal, and hydropower provided 55.7% of new

installed U.S. electrical generating capacity during the first half of 2014 (1,965

MW of the 3,529 MW total installed).

http://www.renewableenergyworld.com

http://www.eia.gov/

http://www.triplepundit.com/
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Growth of Synchrophasors (PMU)

Reported by NASPI*

• By March 2012, 500 

networked PMUs installed.

• >1700 PMUs installed by 

2015.

*NASPI: North American SynchroPhasor Initiative.

North America

• More than 2000 PMU

[Beijing Sifang, 2013].

China

• http://www.eia.gov/todayinenergy/detail.cfm?id=5630

• Beijing Sifang Company, “Power grid dynamic monitoring and disturbance identification,”

in North American SynchroPhasor Initiative WorkGroup Meeting, Feb. 2013, 2013.

PMU map in North America as of Oct. 2014.



Spatio-temporal Correlations at Multi Scales
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Renewable Data

Renewable Data

Renewable Data

Renewable Data

Renewable Data

Renewable Data

Improved Forecast & Dispatch

(5 minutes to hours ahead)

Renewable Data



Spatio-temporal Correlations at Multi-scale
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Synchrophasor

Synchrophasor

Synchrophasor
Synchrophasor

Synchrophasor

Synchrophasor

Synchrophasor
Early Anomaly Detection & Mitigation

(milliseconds to seconds)



Wind Variability and Spatial Correlation
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• Source: http://www.caiso.com/1c9b/1c9bd3a394f0.pdf
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Spatio-Temporal Wind Forecast

91 mile 24 mile

West East

Communication and Information exchange:

• Produce good wind generation forecast

• Reduce the system-wide dispatch cost

• Lower the ancillary services cost

• Incorporate more wind generation 

• Related work by M. He and L. Yang and J. Zhang and V. Vittal, "A Spatio-temporal Analysis Approach for Short-

term Wind Generation Forecast,” IEEE Transactions on Power Systems, 2014.



• Persistence (PSS) Model

• Assume the future wind speed is the same as the current 

one:

• Autoregressive (AR) Model:

• Estimate μr
s,t+k as a linear combination of the previous 

wind speed at the same location

where μr
s,t+k is the residue term of center parameter of wind speed.
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Existing Methods
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Spatio-Temporal Wind Speed Forecast

• The scale parameter is modeled as

• Where b0, b1>0 and vs1,t is the volatility value:

• The residual term modeled as a linear function of current 

and past (up to time lag h) wind speed and trigonometric 

functions of wind direction.
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Spatio-Temporal Wind Forecast

West Texas Case Study [1]

[1] L. Xie, Y. Gu, X. Zhu, and M. G. Genton, “Short-Term Spatio-Temporal Wind Power Forecast in

Robust Look-ahead Power System Dispatch,” IEEE Tran. Smart Grid, 2014.
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Forecast Model Performance

MAE VALUES OF THE 10-MINUTE-AHEAD, 20-MINUTE-AHEAD AND UP TO 1-HOUR-AHEAD

FORECASTS ON 11 DAYS’ IN 2010 FROM THE PSS, AR, TDD AND TDDGW MODELS AT THE FOUR

LOCATIONS (SMALLEST IN BOLD)
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Wind Generation Forecast Distribution

One Hour-ahead Wind Generation Forecast Uncertainty

Hour ahead Wind generation forecast uncertainties of Jayton (JAYT), Texas 

under various days
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Total Operating Cost



Spatio-temporal Solar Forecast [2]
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[2] C. Yang, A. Thatte, and L. Xie, “Multi time-Scale Data-Driven Spatio-Temporal Forecast of Photovoltaic Generation,” IEEE

Tran. Sustainable Energy, 2015.



ARX Model for Solar Irradiance Forecast [2]

We compared our model (ST) to persistence  (PSS), 

auto regression (AR), and back-propagation neural 

network (BPNN) forecast models
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Local

Neighbor Sites

[2] C. Yang, A. Thatte, and L. Xie, “Multi time-Scale Data-Driven Spatio-Temporal Forecast of Photovoltaic Generation,” IEEE

Tran. Sustainable Energy, 2015.



Results [2]
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Performance for 1 hour ahead

Performance for 2 hour ahead
Shorter time-scale:

Spatio-temporal is 

worse than PSS



Part I: Summary

• Spatio-temporal correlation among renewable 

generation sites (wind and photovoltaic) could 

be leveraged for improved near-term forecast

• The economic benefit from spatio-temporal 

forecast vary at different time scales

• Possible extensions: 

• Large ramp forecast

• Distributed PV forecast
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Barriers to Using PMU 

for Real-time Operations

Large sets of PMU data

Efficient 

real-time 

analysis

Missing

data

prediction

Data

storage

Dimensionality Reduction

Related Work:

[5] M. Wang, J.H. Chow, P. Gao, X.T. Jiang, Y. Xia, S.G. Ghiocel, B. Fardanesh, G. Stefopolous, Y. Kokai, N. Saito, M.

Razanousky, "A Low-Rank Matrix Approach for the Analysis of Large Amounts of Power System Synchrophasor Data,"

in System Sciences (HICSS), 2015.

[6] N. Dahal, R. King, and V. Madani, IEEE, “Online dimension reduction of synchrophasor data,” in Proc. IEEE PES

Transmission and Distribution Conf. Expo. (T&D), 2012.
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No system topology, no system model. 

Total number of PMUs: 7. 
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PMU Data from Eastern Interconnection
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Bus Frequency Profile Voltage Magnitude Profile

Total number of PMUs: 14 for frequency analysis

8 for voltage magnitude analysis. 



PCA for Texas Data

Cumulative variance for bus frequency and voltage magnitude for Texas data.
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Scatter Plot of Bus Frequency

2D Scatter plot for bus frequency. 3D Scatter plot for bus frequency.

Normal 

Condition

Abnormal 

Condition

Back to Normal 

Condition
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Scatter Plot of Voltage Magnitude

2D Scatter plot for voltage magnitude. 3D Scatter plot for voltage magnitude.

Normal 

Condition

Abnormal 

Condition

Back to Normal 

Condition



Observations

• High dimensional PMU raw measurement data 

lie in an much lower subspace (even with linear 

PCA)

• Scattered plots suggest that 

Change of subspace -> Occurrence of events !

• But, what is the way to implement it? 

• Is there any theoretical justification? 

Data-driven subspace change  Indication of physical 

events in wide-area power systems
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Corporate PDC
Data

Storage

Synchrophasor Data

Dimensionality Reduction

Data

Storage

Early Event Detection

: Phasor measurement unit

PDC: Phasor data concentrator

: Raw measured PMU data

: Preprocessed PMU data

Local PDC Local PDCLocal PDC

Early Event Detection

Pilot PMUs



Dimensionality Reduction Algorithm [3]

: Measurement matrix  1. PMU Data Collection
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[3] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event Detection:

Linearized Analysis,” IEEE Tran. Power Systems, 2014. 31



PCA for Bus Frequency

Cumulative variance for bus frequency.
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Possible Implementation
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Theorem for Early Event Detection

Using the proposed event indicator    , a system event can 

be detected within 2-3 samples of PMUs, i.e., within 100 ms, 

whenever for some selected non-pilot PMU i, the event 

indicator satisfies

 
 i

t 

where       is a system-dependent threshold and can be 

calculated using historical PMU data.





Theoretically justified.
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Sketch of the Proof

• Power system DAE model

• Discretization

• Using back substitution, explicitly express output 

(measurement) y[k] in terms of initial condition x[1], 

control input u[k], noise e[k]
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Sketch of the Proof (cont.’d)

• Normal conditions: training errors are small

• U0 and x[1] can be theoretically calculated by TRAINING 

data.

• Any changes in control inputs and initial conditions will 

lead to large prediction error.

• If system topology changes,         and        will change, 

resulting in a large prediction error.

36
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Case Study 1: PSS/E Data

• 23-bus system

• 23 PMUs.

• Outputs of PMUs: ω, V.

• Siemens, “PSS/E 30.2 program operational manual,” 2009.
37



38

Time 
Sampling

Points
Event

0-100s 1-3000 Normal Condition 

100.03-
150s

3001-45000
Bus Disconnection 

(206)

150.03-
250s

4501-7500
Voltage set point 
changes (211)

Oscillation Event

time / sec250 0 100 150

Bus 206 

disconnected
Training

Stage

211

ref 0.1V  



39

Early Event Detection



• How EARLY is our algorithm?

Our Method: potentially within a few samples (<0.1 

seconds)

• Most Oscillation monitoring system (OMS) needs 

10 sec to detect the oscillation.
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Early Event Detection

• V. Venkatasubramanian, “Oscillation monitoring system, ” PSERC Report, 2008.



Case Study 2: Unit Tripping Event

• No system topology, no system model.

• Total number of PMUs: 7.

• 2 unit tripping events.

• Sampling rate: 30 Hz.
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Cumulative variance for bus frequency and voltage magnitude for Texas data.

PCA for Bus Frequency and Voltage Magnitude
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Early Event Detection

w4 profile. during unit tripping event.4





• Large-scale PMU data can be reduced to a 

space with much lower dimensionality 

(surprisingly well).

• Change of dimensionality could be leveraged for 

novel early anomaly detection

• Rich physical insights can be obtained from 

PMU data

• Possible extensions: 

• Event classification, specification and localization 

• Online PMU bad data processing 
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Part II: Summary

• Y. Chen, L. Xie, and P. R. Kumar, “Power system event classification via dimensionality reduction of 

synchrophasor data,” in Sensor Array and Multichannel Signal Processing Workshop, 2014. SAM 2014
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Concluding Remarks

• We investigated the integration of large data 

sets for improved grid operations: 

– Spatio-temporal analytics for improved renewable 

forecast & market operations

– Dimensionality reduction of synchrophasor data for 

improved monitoring and anomaly detection

• Many open questions

– Streaming data quality

– Data analytics integration with EMS,DMS, MMS

– How to teach “data sciences” for power systems? A 

first attempt in Fall 15 at TAMU 
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