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Introduction: Background

» An increasing demand for simulating a portion of a
system in detail with a very small time step and capturing
point on wave detail while preserving the effects on the
rest of the system

« Power electronic converter based renewable energy integration
« HV AC/DC systems

* Residential air conditioners, variable frequency drive(VFD) and
other power electronics based loads

. Representlng other needed detall at the distribution Ievel
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Introduction: Hybrid simulation

Involves electromagnetic transient (EMT)- electro-mechanical
transient stability(TS) hybrid simulation
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Introduction: Hybrid simulation

» Key requirements for a successful hybrid simulation
platform

Architecture : embedded/decoupled
Interaction: communication + protocol
Equivalent models of both detailed and external system

Preparation and initialization of both detailed and external
system

» Synopsis of literature review of EMT-TS hybrid
simulation

Lab research or proof-of-concept type

The architecture design is not flexible and the simulators are
limited to run on one computer

Targeted mainly for three-phase balanced applications
No publically available tool for hybrid simulation




Time scale of transient phenomena [
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OpenHybridSim:

A new hybrid simulation tool

» Overall design
 Loosely decoupled architecture
e Socket communication
* InterPSS, an open source power system simulator

 Ageneric interface to an EMT simulator, e.g.,
PSCAD, Maltab/SimPowerSystems
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Communication @
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Socket VabCA <> N
Component e T Socket (= HybridSim
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Socket based communication framework

» TCP/IP socket based communication framework
 Enables decoupling of the EMT and TS simulators
o Supports application environment
- Single computer
- Local area network(LAN)

- Internet
« Socket components in PSCAD and Matlab/SimPowerSystems
are developed for interfacing Y ST X |
g 4l o

SOCKET e
IP Address (1) 127
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send |[COMPONENT recf | T T

Socket component in PSCAD
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External system equivalent

for EMT simulation

» Supports both 1-phase and 3-phase equivalents
« 1-phase: mainly for three-phase balanced applications
o 3-phase: any type of fault within the detailed system
« Facilitates simulation of unsymmetrical faults

» 3-phase Thévenin equivalent of external system based
on a 3-sequence network model
 The given base case is modeled using 3-sequences
* Details are provided on the next slide
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Three-phase Thévenin equivalents
of the external system

o Step 1: Calculate 3-sequence
Norton equivalents

[120 = y120/120 _ 120

EMT - é ‘
e Vi |
o Step 2: 3-sequence to 3-phase | busy jz. #Z""b
transformation for each boundary bus | HJZ 7. é\,;;
ibc I
SRy -y T
where S is the transformation matrix, Detailed : [] o T
y120 is the bus primitive admittance ~ SYS®M I
Zkab Zka é—) VTak
e Step 3: 1-phase Norton to | 2 o
Thévenin for each boundary bus | bus ﬁ e B ()
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Single-phase line Three-phase line e
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Detailed system represented by sequence
current sources in TS simulation
» Need to extract three-sequence, fundamental frequency
currents from instantaneous, waveform values

» Use well-established FFT algorithm
« PSCAD provides an FFT component

» Directly used in the network solution (I=YV) In TS
simulation

IPM  INM  1ZM
Mag+ |[Mag- [Mag0
|_interface " 3. 2. 1 A XA . () 1) 1, IPP
FFT (7)
B XB.| ||| Ph- INP
T [@
IC | - 1ZP
g XC F=600Hz %

dcA |dcB |dcC

FFT Component in PSCAD
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Three-sequence based TS simulation for
simulating unsymmetrical faults

| (1)
EMT (t)
—>

Positive-sequence network
solution and integration step

X(t) = f(x(t), yg)
X(t + AT) = X(t) + X(t)AT
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The interaction protocols
between two simulators

| | | TS

EMT
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Implementation with the series type protocol [k

» The series protocol

» Use the updated equivalent data for simulation with each simulator

» Performance issue: One simulator has to remain idle when the other
IS running the simulation

3 Positive-sequence network
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Implementation with the parallel type protocol

» The parallel interaction protocol
« Steps (d) and (e) run simultaneously

» May cause significant interfacing errors under fast transient
conditions, as the Thévenin equivalent data is one-step delayed
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Automatic protocol switching algorithm

» Automatically switch interaction protocol based on the
system conditions, reflected by the maximum rate of
change of sequence current injections

((P) ()
EMT(i, t EMT(i,t — AT
RI120 =max( max ( (.0 L ) ) [ AT
EMTM) i hew2.0) @)
EMT (i, t — AT)
I 120 Maxi 1 -
EMT (t) aximum series
— P rate of
1120 change
M Rlllzifl)T DEE{ 0
? time step parallel
AT

Logic of the protocol switching algorithm
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Automatic creation and initialization
of the external network
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Testing of the developed platform

» Test system s
Bus 8 L F JPh
Bus2 Bus 7 230ky Bus9 Bus3 ->
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Case 1: The interaction protocols

» Case 1 setting: 12
- EMT time step = 50 us
-TS time step =5 ms

» Protocol control setting:
-Threshold € = 0.004

= PSCAD
EMT-TS(series)

= = = = EMT-TS(parallel)

""" “©---- EMT-TS(combined)

.......

current (kA)
»
N
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P 2, §
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Case 2: Performance of the developed PSERC
platform under unsymmetrical faults

» Internal network: Bus 5 and branch Bus5-Bus7
» Two-port three-phase Thévenin equivalent

» Detailed modeling of bus 5 using the WECC composite load model,
with the 1-p air conditioner compressor motor represented by a EMTP
type model developed by Yuan Liu, et al [1]

Bus 8
BUS? Bus 7 230 kV Bus9 Bus3 S I I Bus 5
100+j35MVA Bus us ° 230 kV
18kV 230KV - 230 kV 13.8 kV Ingle line to
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4 CyC I €S ‘ 69/12.47 kV
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L
Bus 4 Equivalent _T %
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Detailed modeling of Bus 5

[1] Y. Liu, V. Vittal, J. Undrill, and J. H. Eto, "Transient Model of Air-Conditioner Compressor Single Phase Induction Motor," IEEE
Transactions on Power Systems, vol. 28, pp. 4528-4536, 2013. 21



Case 2: Performance of the developed
platform under unsymmetrical faults

Voltage (kV)
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Three-phase voltage of Bus 5 Bus 5 into the external network
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Takeaways of part-1

1. The combination of the decoupled architecture and
socket-based communication facilitates both simulators
to be run on either one computer or several computers
to achieve more flexibility and a better performance

2. The proposed combined interaction protocol with the
auto-switching feature helps improve the hybrid
simulation efficiency while a good accuracy Is
guaranteed

3. Application of the multi-port three-phase Thévenin
equivalent enables simulating unbalanced faults within
the detailed system, without the constraint of phase
balance at the boundary buses
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PSERC

Fault induced delayed voltage recovery (FIDVR)

> FaUIt LTC/CAPS OFF

o distribution, sub- U SRRSO A - f—
transmission and & .| —— N N — /
transmission E e
systems 5 # y

S ¥ i
» Delayed voltage 2 |

recovery % A

» several to tens of 5
seconds T

> Root cause of —_—
205 Time

FIDVR

 air conditioner
(A/C) compressor

I [2] D. N. Kosterev, A. Meklin, J. Undrill, B. Lesieutre, W. Price, D. Chassin, et al., "Load modeling
m Otor Stal I I n g an d in power system studies: WECC progress update,” in 2008 IEEE Power and Energy Society General
prolonged tripping

\oltage profile during a typical FIDVR event [2]

Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-8.
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Fault induced delayed voltage recovery (FIDVR)

» Accurate FIDVR studies require
« Detailed A/C modeling
» Detailed network model down to distribution feeder level
» Limitations of the conventional positive-sequence TS

simulator
« Distribution system configurations

* Response of single-phase devices when subjected to
unsymmetrical faults

» FIDVR events are generally localized
» Detailed modeling can be limited to a small portion of a large

power system
FIDVR A large
Area power system
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Determination of the boundary
of detailed system

» Use a simple yet generic test case to quantify the voltage dip
threshold at a transmission bus causing A/C motor stalling

» Criterion: A bus is included in the internal system if a single-
phase or three-phase fault at that bus causes a phase-to-neutral
voltage at buses with a large percentage of A/C motor loads to
drop below 0.75 pu.

—G—XT:0-025 —A—XT:O.OS —*—XT:O.l —e—xr:O.15 —E—xTZO.Z

0.5 0.5

q
0.45}

©
S

Equivalent Step-down Equivalent

source transformer feeder
115kV impedance Busl Bus 2 impedance ~ BUS 3
0.03+ j0.04

1.04pu 0,005+ j0.05 |X;=25-20%
— Composite
L Load model
115/12.47 kV

0.35F

0.359§§
S S —

0.25 . . * 0.25 * * .
0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1

Voltage dip magnitude (pu)
Voltage dip magnitude (pu)

©
w

A/C load percentage A/C load percentage
@ (b)

Voltage dip magnitude w.rt. the A/C load
percentage and the transformer impedance: (a)
A/C power = 4.9 kW (b) A/C power = 6.0 kW
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Applied the boundary selection criterion |[Fye
to the WECC system

B Number of 230 kV 37
buses of 161 kV 3

The WECC system Buses with a large percentage
Transmission of 1-®d A/C motor load
Buses lines Generators Loads e Bus 24151
115750 13715 3074 /787 | e Bus 24138
‘WWNOR;H 777777777777777777777 3 STATISTICS OF THE DETAILED SYSTEM MODEL
I *ifj:::i""”"" "*"”"""’*{”""*} TOtaI number 238
\ 1 | of buses
1 500kv | 7

7777777 different 115 kV 68

voltage levels 02 kV 18

| <= 66kV 105
Sub-system below 500 kV Total Load 119 GW

One-line diagram of the study region
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Initialization of the detailed system with a

PSERC
large percentage of load as induction motors

> The built-in initialization function of PSCAD falls to
Initialize the detailed system

» A two-step initialization approach

Bus  HV
(1) The switch K is turned to the position O, LV%
and the distribution systems and the CLMs
are energized by the fixed voltage sources
and initialized independently.
(2) After the CLMs are successfully
initialized, the switch K is turned to the
position 1 such that distribution systems are
connected to the transmission system.

Static
equivalent
load

Distribution network

CLM CLM CLM

NOTE: The magnitude and phase angle of CLM: composite
the fixed voltage source, S, are set based on load model

the power flow solution of the given base
case
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Benchmarking hybrid simulation against
conventional transient stability

> BOth use ConStant |mpedance |Oad 105 Bus 24801 positive sequence voltage
» A single line to ground (SLG) fault = F
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24151 att=0.2s Bo5 f
£
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11 us positive sequence V,O tage % L\-s.,
1.05 - B'850 0.1 0.2 0.3 0.4 0.5
=1 = . 2 0 . .
% 1 —EMT-TS [ =025 Bus14931 machine #1 reactive power
E 0.95 — InterPSS || a2
S 0.9 5 023 7=\ | —EMT-TS |
g 085 © 0.21 InterPSS ||
= g
= 08 & 0.19 ‘
> 0.75 é 0.17
0.7 E— s
0 0.1 0.2 0.3 0.4 0.5 = 0.15
Time (s) 0 0.1 0.2 0.3 0.4 0.5

Time(s)
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FIDVR event triggered by a SLG fault
» Detailed modeling of the region served by Bus 24151

Bus 24151
500 kV_
-— I
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560 MVA = = 560 MVA 560 MVA 560 MVA
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1
22 +j*1.1 il
46.8 MVA
MVA N r 0.12 pu
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Bl;i :5;\/23 0.12 pu A A A A\115/1247kv () /\ VAN VAN A
250 MVA A A A A A A A A

115 /12.47 kV

i f-2 f-3 f-4 f-5 f-6 f-7 -8
Equivalent Feeder f-1
Equivalent Equivalent Equivalent Equivalent Equivalent Equivalent Equivalent Equivalent
feeder feeder feeder feeder feeder feeder feeder feeder
Model Model Model Model Model Model Model Model
202+j*(-8) MVA  202+j*(-8) MVA  202+j*(-8) MVA 202+j*(-8) MVA 202+j*(-8) MVA  202+j*(-8) MVA  202+j*(-8) MVA 202+j*(-8) MVA

>
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two sections

1
e o
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FIDVR event triggered by a SLG fault (cont’)

Terminal wltage of the A/C motors at the 1/4 length point

70% 1-® A/C motor, !

phase A |}

. . _ NG phase B |

15% B'q) |ndUCt|0n > phaseC-
%.5 06 07 08 09 1 11 1.2 13 14 15

motor, 15% constant
Impedance 1
Phase A and C were

directly affected by the

SLG fault at Bus 24151 .

Speeds of the A/C motors at the 1/4 length point

phase A |
-\\\ phase B [
) phase C L
06 07 08 09 1 11 1.2 1.3 14 15

Speeds of the A/C motors at the

end of the feeder

. N |

A/C motor stalling ) N\ phase C |
propagated to non- 0. 06 07 08 09 1 1.1 1.2 1?3 1?4 1.5

Sequence wltages of the 115 kV bus# 24160

affected phases (phase . ————
B in this case) 08 Negaive
VOItageS Of a” th ree %.5 o0 OS.;uner?éz voltg;gges oftie 50(}‘klv bui5241;1:3 1:4 "
phases were depressed : —
after 0.95 s 0.5 egaive ¢
%.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1:3 1:4 15
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Effects of load composition on FIDVR

phase A phase B —==-phase C
- Load composition 15
>
- 75% 1-® A/C motor, NN Casel
25% constant impedance g 0.5 < k
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70% 1-® A/C motor, = ! '-'-\\\\ Case 2
15% 3-® NEMA type B induction g 05 W E
motor, 15% constant impedance ? o A
60% 1-d A/C motor, 0506070809 1 111213141516 171819 2
15% 3-& NEMA type B induction .
motor, 25% constant impedance 83 1 ' NN Casei3
50% 1-® A/C motor, g 05 e \\
25% 3-® NEMA type B induction ? o NN
motor, 25% constant impedance 0506070809 1 111213141516 171819 2
1.5
Propagation of A/C motor stallingto z ,
unfaulted phase is consistent across 3 o5 I NS Cased
. 8 So PN
a substantial range of load R N

CompOSitionS 0506070809 1 111213141516 171819 2

The impacts of SLG faults closeto 3 Li il
certain regions of the system with 3 “T\“\ Case 5
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Time (s) 32



Effects of point-on-wave (POW) on FIDVR

e POW effects on the
occurrence and

Phase A Phase B =™ Phase C

. - — SR | M—
evolution of FIDVR Z \ 22 T -
g 05 al)g o5 +-A
are apparent, & \ & )
based on the 25 1 15 2 %5 1 15 2
. . s 1 ‘ = 1
differencesinthe 2 T s | \ao ®2
response of the g T
A/C motors of bus - 25 1 15 2 - 05 1 15 2
% bus 24151 ‘% bus 24151
24160 g — - —--pus 24160 S 1 =+ =+=hus 24160 H
 The POW when the 2 - s 2
o 0.8 = o o 0.8
fault occurred P T A S | ¥
= 0.6 s = 0.6 S S—
ShOL”d be § 0.5 1 1.5 2 é 0.5 1 1.5 2
considered for e e
Case 5A, POW =45 deg Case 5, POW =0 deg

detailed FIDVR
study
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Takeaways of part-2

1. The study shows that a normally cleared,
single line to ground fault at a 500 kV bus
close to the A/C loads can lead to a FIDVR
event. The event begins with A/Cs stalling on
two directly-impacted phases, followed by A/C
stalling propagating to the unimpacted phase.

2. Further, five study cases with quite different
load compositions show similar A/C motor
stalling resuilts.

3. The POW when the fault occurs could have a
significant impact on the response of the A/C
compressor motors.
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Conclusions

1. Anew EMT-TS hybrid simulation tool is developed,
which features 1) decoupling architecture, 2) generic
Interfacing with an EMT simulator, 3) flexible switching
of interaction protocol and 4) support of three-phase
equivalent of external system.

2. The hybrid simulation tool has been applied to study
the FIDVR phenomenon within a region of WECC
system, certain aspects of the evolution of the
phenomenon were uncovered for the first time.

3. The developed tool is not limited to FIDVR study, but
also applicable to studies that require detailed models
and simulation of a part of a large power system, while
preserving the slow dynamics of the rest of the system
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Thank you!
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