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Outline

Problem
– Overview of control requirements and challenges

Proposed Strategy
– Online set point modulation

Results of Evaluation of the Strategy
– Offline simulation
– Real-time implementation 
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Problem

One of the grand energy challenges is to enable 
integration of large amounts of renewable energy 
resources at a competitive cost in the power grid (in the 
US, 80% by 2050 per NREL).
What is missing is a flexible system that accommodates 
the unique characteristics of renewable resources:
– Intermittency
– Lack of inertia
– Susceptibility to violation of operational limits

Our work addresses the latter:
– How can we make sure our units are “tightly” controlled and do 

not violate their limits even when the host system changes 
significantly?
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Microgrid Challenges (1/3)

The future power system can be envisioned as a 
collection of microgrids as its building blocks.
Microgrid is an aggregate of collocated resources (loads, 
generation units, and storage units) that are interfaced 
to the main grid at the distribution level and is capable 
of operating in the grid-connected mode, islanded mode, 
and the transition between these two modes. 
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Microgrid Challenges (2/3)

Microgrids offer many benefits, but they may experience
– Frequent changes in the topology;
– Operation close to the limits to increase asset utilization; and
– Limited total capacity.

This can have a detrimental effect on the performance of 
controllers.
– Controllers are designed for a prespecified configuration and their 

performance deteriorates when the host system varies 
significantly from what was used for the original design.

– This can cause violation of the instituted limits, e.g., maximum 
power transfer and maximum current.
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Microgrid Challenges (3/3)

Example
– Effect of large load change on controller performance.

Load Disconnected
Overshoot: 26%

Settling time: 67 ms

Original System
Overshoot: 15%

Settling time: 32 ms
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Controller Design: Existing Approaches

Existing approaches to ensure dynamics of the system 
are handled design controllers based on
– Analytical formulation and model-based tuning (Astrom’s work)
– Optimization (Gole’s work)

Why not just redesign?
– Need updated system models 
– Need a computational infrastructure to allow redesign
– Need access to the internal parameters of the controller
– New design will again have limited robustness to topology, 

operating point, and system parameters
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State of the Art
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Desired Features for Controllers

Robust to topological and operational changes;

Independent of the system model; and

Require little information about the controlled unit.
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Shaping of the Response Trajectory

Consideration of Dynamic Limits of Devices

Challenges
– Avoid violating dynamic limits

• With a small overshoot
– Achieve a fast response

• Without changing the existing controller
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Proposed Solution

Improving the response by 
temporarily manipulating 
the set point

Secondary 
Controller

Primary 
Controller Unit

xsetpoint x(t)Secondary 
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Modulation

Primary 
Controller Unit

xsetpoint x(t)
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Set Point Modulation

Best Strategy
– Choose T1 so that the peak of the response equals the reference
– Choose T2 to be the time of this peak

Not Implementable
– Faster-than-real-time simulator
– Closed-form solution 
– System parameters

T1 tp t

x(t)

0 T1 T2tp
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Finite-State Machine

SPAACE /speɪs/: Set Point Automatic Adjustment with 
Correction Enabled
State Numbering:

Salient Features:
– Based on local signals
– Independent of model
– Robust to changes in parameters
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Case Study I: Set Point Change

System Response
DG2 step change from 0.91 pu to 1.09 pu

DG1 and DG3 unchanged
(40% overshoot)

IEEE 34-Bus System
Added 3 DG units and a load

Operates in grid-connected mode
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VSC Model and Control in Case Studies
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Case Study II: Simultaneous Change

System Response
Simultaneous step change
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Case Study III: Load Disconnection

System Response
Resistive 0.5 pu load disconnected

(15% overshoot)
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Case Study IV: Unbalanced System
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IEEE 13-Bus Unbalanced System
Added a DG unit and a test load

Operates in islanded mode
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CIGRE HVDC Benchmark System

CIGRE HVDC Monopolar First Benchmark System
Rectifier is current controlled

Inverter is voltage controlled (by controlling gamma)
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Case I: Rectifier Current Step (0 to 0.55 pu)
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Case II: Faulted (I-Side) DC Current, 50 ms
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Prediction Methods
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Prediction Algorithms: Step Change

Linear and Quadratic Prediction for the HVDC System
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Sketch of Proof of Existence of Response

We can show that with appropriate
timing, the response settles at T2 = tp. 
– Choose T1 such that xp = 1.
– Choose T2 to be tp for x(t).

We use the intermediate value theorem. 
For f(t) continuous, if for some t1 and t2

, IVT states that f(t) has a root in (t1, t2). 
Choose f(t) = xp(t) – 1. t1 = 0, t2 = 5tsettling. 
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Effect of Scaling Factor m

Adaptive Nature of SPAACE

t

x(t)

u1
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Response without 
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T1 T2

u(t)
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Scaling Factor m
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Effect of m

m Peak (A) Error (Se) Settling (ms)

0 0.149 1.0 80

0.20 0.136 0.806 60

0.55 0.125 0.727 55
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Proof is using the conditions of IVT. That is, to ensure 
f(t1=0) > 0.

Upper Bound of m
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Effect on Stability

SPAACE does not make a stable system unstable (but 
may make an unstable system stable).
Sketch of proof (finite number of set point changes):

The response, from the final value theorem, is



30 of 42

Physical Analogy
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SPAA

If a priori knowledge of overshoot is available
– SPAA /spɑː/: Set point automatic adjustment

Time

x(
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x(t) with 
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SPAA Case Study

Start-Up Current Control
– IEEE 34-bus system with 3 DERs
– DG1 and 3: id = 1.0 pu, iq = 0
– DG2: off to id = 1.08 pu
– SPAA assumes ζ=0.361 and ω=8450 rad/s 
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SPAA vs. SPAACE

SPAA SPAACE
RATE OF UPDATE After steady state Continuously
NEED TO MODEL Yes (approximate) No
EFFECTIVENESS Large changes Moderate changes
APPROACH Open loop Closed loop
RESPONSIVENESS Set point change Any difference in the set 

point and response (set 
point change, load 
switching, faults)
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Experimental Implementation

NI cRIO:
SPAACE 
Algorithm

DC Power Supply

NI cDAQ: Collect Data

Measurement and 
Control Signals

RSCAD

Real-Time Digital Simulator



35 of 42

Experimental Implementation

x(t): output signal, u(t): set point, u*(t): adjusted set point.

u*(t)

x(t), u(t), u*(t)

measure x(t), u(t), u*(t)
NI cDAQ: 

Data 
Acquisition

NI cRIO: 
SPAACE 

Algorithm

Real-Time 
Digital 

Simulator 
(RTDS): 

Power system

Laptop: 
RSCAD and 
LabVIEW 

status 
monitoring

Interactive Execution Data, Data Monitoring

x(t), u(t)

Data
Monitoring
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Test System

G1

250 MW
40 MVAr

93 kV

DER

120 MVA
0.9322 pf 

lagging

Breaker for 
load change 

test

1 2
ZL = 0.014 + j0.064 pu ZT = j0.18 pu ZDER = j0.14 pu
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Case I: Load Energization (1.2 pu)
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Case II: Step Change in iq

Time (s)
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Conclusions

By appropriately designing the trajectory to reduce 
overshoots, it is possible and safe for a system to 
operate closer to its limits.
Offline (PSCAD) and real-time (RTDS) simulation studies 
show that SPAACE is effective in mitigating transients:
– Step change: Mitigating overshoots 
– Fault: Closer set point following
– Load energization: Eliminating a peaks
– Load disconnection in a unbalanced system: Stabilizing oscillatory 

behavior of voltage

The significance of this work is that it can reduce the 
need for overdesign and subsequently increase asset 
utilization.
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Applications

Large AC Systems
Segmented Power System
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2
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DER
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PC1

Emerging Small AC Systems
All-Electric Ships, MEA, and Military Systems

Electric Drives Systems
Control of Speed and Torque Electric Machines

(TU Graz)
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Microgrid Challenges (3/3)

Example
– Effect of large load change on controller performance.

Load Disconnected
Overshoot: 26%

Settling time: 67 ms

Original System
Overshoot: 15%

Settling time: 32 ms
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Effect on Stability

SPAACE does not make a stable system unstable (but 
may make an unstable system stable).
Sketch of proof (finite number of set point changes):

The response, from the final value theorem, is
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Thank You

Control Strategies for Microgrids
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