

Energy Systems Innovation Center

Control Strategies for Microgrids

Ali Mehrizi-Sani

Assistant Professor School of Electrical Engineering and Computer Science Washington State University

(with thanks to my students: Chris Stone, Hooman Ghaffarzadeh, and Mehrdad Yazdanian)

PSERC Seminar Tuesday, April 7, 2015

Outline

Problem

- Overview of control requirements and challenges

Proposed Strategy

Online set point modulation

Results of Evaluation of the Strategy

- Offline simulation
- Real-time implementation
- Sensitivity to design parameters

Applications

Problem

- One of the grand energy challenges is to enable integration of large amounts of renewable energy resources at a competitive cost in the power grid (in the US, 80% by 2050 per NREL).
- What is missing is a flexible system that accommodates the unique characteristics of renewable resources:
 - Intermittency
 - Lack of inertia
 - Susceptibility to violation of operational limits
- Our work addresses the latter:
 - How can we make sure our units are "tightly" controlled and do not violate their limits even when the host system changes significantly?

Microgrid Challenges (1/3)

- The future power system can be envisioned as a collection of microgrids as its building blocks.
- Microgrid is an aggregate of collocated resources (loads, generation units, and storage units) that are interfaced to the main grid at the distribution level and is capable of operating in the grid-connected mode, islanded mode, and the transition between these two modes.

Microgrid Challenges (2/3)

Microgrids offer many benefits, but they may experience

- Frequent changes in the topology;
- Operation close to the limits to increase asset utilization; and
- Limited total capacity.

This can have a detrimental effect on the performance of controllers.

- Controllers are designed for a prespecified configuration and their performance deteriorates when the host system varies significantly from what was used for the original design.
- This can cause violation of the instituted limits, e.g., maximum power transfer and maximum current.

Microgrid Challenges (3/3)

Example

- Effect of large load change on controller performance.

Controller Design: Existing Approaches

Existing approaches to ensure dynamics of the system are handled design controllers based on

- Analytical formulation and model-based tuning (Astrom's work)
- Optimization (Gole's work)

Why not just redesign?

- Need updated system models
- Need a computational infrastructure to allow redesign
- Need access to the internal parameters of the controller
- New design will again have limited robustness to topology, operating point, and system parameters

State of the Art

Approach	Model-Independent	Unintrusive	Parameter-Independent
PI scaling	\checkmark	\checkmark	Х
Ramp	V	V	\checkmark
MPC	X	V	X
PID	X	V	Х
ES/IFL	\checkmark	X	Х
Posicast	X	\checkmark	\checkmark
SPAACE	\checkmark	\checkmark	

Desired Features for Controllers

- Robust to topological and operational changes;
- Independent of the system model; and
- Require little information about the controlled unit.

Shaping of the Response Trajectory

Consideration of Dynamic Limits of Devices

Challenges

- Avoid violating dynamic limits
 - With a small overshoot
- Achieve a fast response
 - Without changing the existing controller

Proposed Solution

Improving the response by temporarily manipulating the set point

Unmanipulated

Set Point Modulation

Best Strategy

- Choose T_1 so that the peak of the response equals the reference
- Choose T_2 to be the time of this peak

Not Implementable

- Faster-than-real-time simulator
- Closed-form solution
- System parameters

Finite-State Machine

- SPAACE /speis/: Set Point Automatic Adjustment with Correction Enabled
 Δt < T_{max}
- State Numbering:

$$(1 - m) \int_{x(t)}^{S_{101}} x(t) > x_{\max}$$

 $x_{\text{pred}} > x_{\text{max}}$

Salient Features:

- Based on local signals
- Independent of model
- Robust to changes in parameters

Case Study I: Set Point Change

Added 3 DG units and a load Operates in grid-connected mode

DG2 step change from 0.91 pu to 1.09 pu DG1 and DG3 unchanged (40% overshoot)

VSC Model and Control in Case Studies

Case Study II: Simultaneous Change

16 of 42	

Case Study III: Load Disconnection

IEEE 34-Bus System

Added 3 DG units and a load Operates in grid-connected mode

System Response

Resistive 0.5 pu load disconnected (15% overshoot)

Case Study IV: Unbalanced System

IEEE 13-Bus Unbalanced System

Added a DG unit and a test load Operates in islanded mode

System Response

Resistive 1 pu load switched off Unstable system to stable system

CIGRE HVDC Benchmark System

CIGRE HVDC Monopolar First Benchmark System

Rectifier is current controlled Inverter is voltage controlled (by controlling gamma)

Case I: Rectifier Current Step (0 to 0.55 pu)

Case II: Faulted (I-Side) DC Current, 50 ms

	Peak (pu)	Error (S _e)	Settling (ms)
No SPAACE	1.744	1.0	800
With SPAACE	1.540	0.45 (Δ=55%)	260 (Δ=67.5%)

Prediction Methods

Prediction Algorithms: Step Change

Linear and Quadratic Prediction for the HVDC System

	Peak (pu)	Overshoot	Error (S _e)	Settling (ms)
No SPAACE	0.878	59.6%	1.0	95
With SPAACE (L)	0.708	28.7%	0.560 (Δ=40%)	75 (Δ=26.3%)
With SPAACE (Q)	0.777	41.2%	0.668 (Δ=33%)	55 (Δ=42%)

Sketch of Proof of Existence of Response

- We can show that with appropriate timing, the response settles at T₂ = t_p.
 - Choose T_1 such that $x_p = 1$.
 - Choose T_2 to be t_p for x(t).
- We use the intermediate value theorem. $H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ For f(t) continuous, if for some t_1 and t_2 $f(t_1)f(t_2) < 0$, IVT states that f(t) has a root in (t_1, t_2) .
- Choose $f(t) = x_p(t) 1$. $t_1 = 0$, $t_2 = 5t_{settling}$.

$$\hat{x}_p(T_1) = \frac{\sin(\psi)}{\omega_d} e^{-\psi \cot(\psi)} e^{\zeta \omega_n T_1} \times e^{-\gamma \cot(\psi)} \sqrt{(\hat{x}\omega_n)^2 + \dot{x}^2 + 2\hat{x}\dot{x}\omega_n\zeta}$$

$$f(t_1) = 1 - 2m > 0$$

$$f(t_2) = -m < 0 \qquad \Longrightarrow \quad \exists t, f(t) = 0 \qquad \text{choose } T_1 = t$$

24 of 42

-m

 T_2

 $T_I \quad t_p$ Time

 x_p

1

0

x(t)

Effect of Scaling Factor m

Adaptive Nature of SPAACE

Scaling Factor *m*

Effect of *m*

m	Peak (A)	Error (S _e)	Settling (ms)
0	0.149	1.0	80
0.20	0.136	0.806	60
0.55	0.125	0.727	55

Upper Bound of *m*

Proof is using the conditions of IVT. That is, to ensure f(t₁=0) > 0.

28 of 42	

Effect on Stability

- SPAACE does not make a stable system unstable (but may make an unstable system stable).
- Sketch of proof (finite number of set point changes):

$$r(t) = u(t - t_0) + \sum_{i=1}^{2n} (-1)^i mu(t - t_i)$$

$$R(s) = \frac{1}{s} + m \sum_{i=1}^{2n} (-1)^i \frac{e^{-t_i s}}{s}$$

The response, from the final value theorem, is

$$\begin{aligned} X(s) &= H(s)R(s) \\ &= H(s)\left(\frac{1}{s} + m\sum_{i=1}^{2n}(-1)^i\frac{e^{-t_is}}{s}\right) \quad \Longrightarrow \quad \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s) = 1 \end{aligned}$$

Physical Analogy

SPAA

• If *a priori* knowledge of overshoot is available

SPAA /spaː/: Set point automatic adjustment

SPAA Case Study

Start-Up Current Control

- IEEE 34-bus system with 3 DERs
- DG1 and 3: i_d = 1.0 pu, i_q = 0
- DG2: off to i_d = 1.08 pu
- SPAA assumes ζ =0.361 and ω =8450 rad/s

SPAA vs. SPAACE

	SPAA	SPAACE
RATE OF UPDATE	After steady state	Continuously
NEED TO MODEL	Yes (approximate)	No
EFFECTIVENESS	Large changes	Moderate changes
Approach	Open loop	Closed loop
RESPONSIVENESS	Set point change	Any difference in the set point and response (set point change, load switching, faults)

Experimental Implementation

Experimental Implementation

x(t): output signal, u(t): set point, $u^*(t)$: adjusted set point.

Test System

Case I: Load Energization (1.2 pu)

Case II: Step Change in i_q

Conclusions

- By appropriately designing the trajectory to reduce overshoots, it is possible and safe for a system to operate closer to its limits.
- Offline (PSCAD) and real-time (RTDS) simulation studies show that SPAACE is effective in mitigating transients:
 - Step change: Mitigating overshoots
 - Fault: Closer set point following
 - Load energization: Eliminating a peaks
 - Load disconnection in a unbalanced system: Stabilizing oscillatory behavior of voltage
- The significance of this work is that it can reduce the need for overdesign and subsequently increase asset utilization.

Applications

Electric Drives Systems Control of Speed and Torque Electric Machines (TU Graz)

Control Strategies for Microgrids

Ali Mehrizi-Sani

mehrizi@eecs.wsu.edu http://eecs.wsu.edu/~mehrizi