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How will distributed photovoltaics (PV) impact
distribution system infrastructure?
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Talk Overview

1. Simulation study: How do distributed PV
impacts vary across feeder types and climates?

— Location has strongest influence on voltage
excursions and capacity deferral benefit

— Feeder type has strongest influence on changes in
resistive losses and voltage regulator operations

2. Economic interpretation of results in PG&E
territory
— Avoided energy costs much larger than other costs
3. Asolution? How can distributed inverters help
with voltage and resistive losses?

— Application of model-free optimal control tools for
volt-VAR optimization



Part 1:
Simulation Study -- Engineering Impacts



Simulation Framework
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Feeder Characteristics

Nominal Di<t. Avg Approx Basgine Heak
Peak Load  Trans House Length Load (MW)
Name* Serves [10] (MW) [10] formers (kW) [11] (km) Beak. LA  Sac
R1-1247-1 mod. suburban & rural 15 618 4.0 2.9 996 538 799
R1-1247-2 mod. suburban & It. rural 283 264 45 10.3 200 204 282
R1-12.47-3  moderate urban 1535 22 8.0 19 127 125 160
R1-1247-4  heavy suburban 2.30 a0 4.0 2.3 4 .31 409 565
- R1-25.00-1  light rural 2.10 115 6.0 22.5 235 223 300
-+ R312471  heavy urban 8.40 472 120 4.0 664 630 870
- R3-1247-2 moderate urban 4.30 62 140 9.7 345 327 440
- R3-1247-3  heavy suburban .80 1,733 4 07 10.4 754 700 967

 PNNL taxonomy feeder set

— Total set: 23 identified from sample of 575 feeder models from U.S.

— We chose the 8 feeders from climates present in California

 Urban, suburban, rural
* Voltage 12.5 or 25 kV

* Length from 2-50 miles
 Peak demand 1-10 MW



A Hypothetical Geography
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PV/Meter Matching




Impact on Losses
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Normalized Peak Load

Impact on Peak Load
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Tap Change Count (Thousands)
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Transformer Aging and Reverse Flow

Secondary distribution
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Generalization # 1:

Voltage excursions and peak loading more strongly
influenced by location than feeder type.

Generalization # 2:

Voltage regulator operations and % change in losses
more strongly influenced by feeder type than location.

Generalization # 3:

Though impacts (positive and negative) are non-negligible,
in this set of feeders and locations they are generally small



Additional Areas to Investigate

* Will location-driven results have less diversity
if loading is defined as

— % of max load at solar noon?

— % energy delivered versus demand?
* Impact of spatially concentrated loading
e Causes of differing voltage regulator impacts



Part 2: Economic Impacts
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Energy Value

cost of energy cost of energy
at substation, — at substation,
0% penetration X% penetration

PV production at X% penetration

Captures loss reduction and PV generation

Energy prices from CAISO day ahead LMP data
— Assume LMP independent of PV penetration

Result:[3.50¢/kWh]

Reference: average LMP was 2.97¢/kWh in
study period




Distribution Capacity: Data, Assumptions

* For all ~3,000 feeders in PG&E (subject to NDA)

— Peak MW demand and 5 year forecasted growth
— Peak MW capacity

— We dropped feeders
* at or below 4.16 kV (2.4% of total capacity),
* with 10% or more PV penetration (7.6% of tot. capacity)
 already loaded over rated capacity (1.7% of total)
 PG&E distribution expenditures (major work category
06 and 46) for 2012-2016

— In consultation with PG&E, 83-93 percent of MWC 06 and 46
considered sensitive to peak loading, depending on year

 PG&E weighted cost of capital = 7.6%, escalation /
inflation = 2.5%



Capacity Deferral — Time Value of Money

Peak load without PV
[PG&E projections]

Capacity benefit is the difference
in the time value of money
between these two times

Feeder capacity [PG&E records]

Peak load

Peak load with PV [PG&E projections +
GridLAB-D simulation]

o\

Simulated peak load reduction % projected to 2022

2012 . 2022
Time
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Capacity Deferral — Time Value of Money

. L . Peak load without PV
Capacity benefit is the difference [PG&E projections] A
in the time value of money |
between these two times AL
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Netp ;‘ZSG;H’[ Velﬂue = ( average savings) X peak-load sensitive
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ratio PG&E distribution budget
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Energy-levelized capacity benefit =

discounted energy produced »



Total Capacity Benefit
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Energy-Levelized Capacity Benefit
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Distribution Capacity Benefit per kW

of PV Capacity
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Annualizeq Capacity Benefit ($/kW-yr)

15%: 30% 509 75%,

PV Penetration

1 E'E'f'::

variable

-®- 90th percentile
75th percentile

-8 median

-®- 25th percentile

-®- 10th percentile

Note: percentile is among those feeders that would have had projects in

the study period (approximately 10 percent of total).
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Other Economic Results

* Discount rate matters for capacity value

— Increasing WACC to 10% roughly halves cap. value,
decreasing to 5% roughly doubles cap. value.

* Voltage regulator maintenance costs likely small

— Increased maintenance costs across all PG&E would
be S100k-S400k/year at 100 percent penetration

e Assuming voltage regulator maintenance scales linearly with
voltage regulator operation

— Contrast to capacity value, which is tens of millions
per year



Key Economic Takeaways

1. Capacity deferral benefits are very
heterogeneous, but:

— Could be as large as avoided energy benefits; in
general will be much smaller

— Could approach the size of possible retail fixed
charges, but in general will be much smaller

2. Economic costs to manage voltage problems
appear to be very small across utility footprint
— But matters on a few individual feeders

3. Costs at even higher penetrations could become
significant — further study needed.



Part 3: Smart Inverter VVO

* |nverters can regulate voltage and reduce
resistive losses by

— injecting reactive power to raise local voltage or

— absorbing reactive power to reduce local voltage
* Activity in this space:

— Rule-based strategies, such

as proposed |EEE 1547

* Suboptimal, only
regulates local voltage.
— Model-based optimization ¥ s
St rateg|e5 Source: Aminul Huque, PV Distribution Systems

. Modeling Workshop (2014)
e Require exact model and
measurements of all real and reactive power injections on
feeder

L L~ p——— YT

% Available VARS (Q)

Inductive




An Alternative Approach?

Extremum-seeking (ES) control

— Non-model based

— Provided certain conditions are met, can optimize system
Modulation signal (probing signal) is injected into
plant dynamics: u =0 + a cos wt

— |If separate controllers probe at different frequencies, they
will not interfere

Excited plant explores the local

objective function plant > Objective
Objective function output is al I
demodulated P—1 ! ‘L(%’H
Demodulated output passes acoswl S

through an integrator



ES Applied to Volt VAR Optimization (VVO):
Basic Approach
Control: Inject reactive power at different nodes
on a feeder (multiple controllers)

Sensor: Measure real power demanded at
feeder head, broadcast to inverters

Inverter-level objective: Minimize feeder head
real power

Iﬁl —1 I"{i;:

Py + jQr
e + j >

Pr—1 + J(qr—1 + vk—1)

29



ES Applied to VVO: Central Questions

Does this formulation satisfy the assumptions
for ES to work?

— Specifically, is feeder head real power convex w.r.t.
reactive power at any point in the system?

What happens to voltage magnitudes in this
setting?

Will it work in simulation?
What is the best probing frequency to use?
Will it work in practice?



Analytical Results

1. Real power at the feeder head is convex with
respect to reactive power injection anywhere on
the feeder

— Statement requires that reverse power flow does not
exceed the rating of each line

— This result guarantees each controller will identify a
setting that minimizes real power at feeder head
2. Voltage magnitudes will always move closer to
the substation feeder head as a consequence of
this control action

— Q@Quarantees that control action will not create
voltage problems



Simulation Results

* Model from Kersting, Distribution

© system modeling and analysis
(2012).
l_@)  Smart inverters at nodes 3, 8, and 9
@ — Probing frequencies: 0.01-0.03 Hz
— Inverter kVA ratings:
@ ® 5 — For now assume real power from PV
? does not limit reactive power injection
(f/ ® @ a9 e Loadsatnodes,5,7, 8,11, and 12.
— Publicly available 30 minute demand
® ) ad information (kW) from PG&E
— Simulations with faster (1 minute data)

also work (for those data we run
controllers at approx 5-15 Hz)

— We are in need of much faster data!
32
32



Simulation Results
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ES Applied to VVO: Central Questions

Does this formulation satisfy ES assumptions?

— Yes, feeder head real power is convex in a wide
range of power flow conditions

What happens to voltage magnitudes?

— They are improved

Will it work in simulation?

— Yes, so far

What is the best probing frequency to use?
— Need substn telemetry data to answer question

Will it work in practice?
— We are in search of a testbed....



ES Control: Interpretation
and Future Work

Summary and interpretation

e Off-the-shelf optimal control, little to no tuning
required in field

* One global measurement required, all other
information local

* |Interoperable — provided manufacturers have
process for ensuring probing frequencies don’t
overlap

Future work:

* |nclusion of local or global voltage magnitude
measurements in objective function



Summary

1. Simulation study: How do distributed PV
impacts vary across feeder types and climates?

— Location has strongest influence on voltage
excursions and capacity deferral benefit

— Feeder type has strongest influence on changes in
resistive losses and voltage regulator operations

2. Economic interpretation of results in PG&E
territory
— Avoided energy costs much larger than other costs
3. Asolution? How can distributed inverters help
with voltage and resistive losses?

— Application of model-free optimal control tools for
volt-VAR optimization
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