
Renewable Energy Integration:  
Technological and Market Design 

Challenges 

PSERC Future Grid Webinar 
February 19, 2013 

Shmuel Oren, Duncan Callaway,  
Anthony Papavasiliou, Johanna Mathieu  

(UC Berkeley) 
Timothy Mount, Robert Thomas, Max Zhang  

(Cornell University) 
Alejandro Dominguez-Garcia, George Gross  
(University of Illinois at Urbana/Champaign) 

 

A PSERC Future Grid Initiative Progress Report 



PSERC Future Grid Initiative 
• DOE-funded project entitled "The Future Grid to Enable Sustainable 

Energy Systems”(see http://www.pserc.org/research/FutureGrid.aspx) 

• Focus of this webinar: Accomplishments in the thrust area “Renewable 
Energy Integration: Technological and Market  Design Challenges” 

• Objectives of this thrust area: Explore technological solutions, market 
design, resource dispatch tools and new planning frameworks for 
dealing with the uncertainty and variability of intermittent renewable 
generation resources. Task objectives include: 
• Develop distributed control paradigms and business models for mobilizing 

demand response to mitigate the uncertainty and variability introduced by 
massive integration of renewable energy resources 

• Develop market mechanisms that will incentivize load response and 
flexibility and correctly price uncertainty (or uncertainty reduction) on the 
demand and supply side. 

• Develop dispatch and planning tools that can explicitly account for 
uncertainty, variability and flexibility (e.g. storage) in resource optimization 
and reserves procurement. 

• Develop simulation tools that can account for increased uncertainty in 
verifying system and market performance 2 

 
 



Context and Motivation 
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Uncertainty 
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Conventional Solution 

Source: CAISO 
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I Need a Brain 

Source: GE  
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• Accounting explicitly for uncertainty in operation and 
planning 
• Stochastic unit commitment (with endogenous reserves 

determination) to support renewable penetration and demand 
response 

• Probabilistic planning and simulation models  (accounting for 
renewables, storage and demand response 
 

• Mobilizing demand response (DR) and a paradigm shift to “load 
following available supply” provides an economically viable and 
sustainable path to a renewable low carbon future. 
• Price responsive load 
• Energy efficiency  
• Deferrable loads: 

• EV/PHEV 
• HVAC 
• Water heaters 
• Electric space heaters 
• Refrigeration 
• Agricultural pumping 
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Thermostatically 
Controlled Loads (TCLs) 

Making the Grid Smarter 
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Planning and Market Design  
for Using Dispatchable Loads  
to Meet  Renewable Portfolio 

Standards and Emissions 
Reduction Targets 

Direct and Telemetric Coupling  
of Renewable Energy Resources 

with Flexible Loads  

Mitigating Renewables 
Intermittency Through Non-

Disruptive Load Control 

Max Zhang, Tim Mount  
and Bob Thomas  
Cornell University 

George Gross and Alejandro 
Dominguez-Garcia  

with Yannick Degeilh  
University of Illinois at Urbana- 

Champaign   

Shmuel Oren  
with Anthony Papavasiliou  

UC Berkeley 

Duncan Callaway with Johanna 
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Probabilistic Simulation 
Methodology for Evaluating the 

Impact of Renewables 
Intermittency on Operation  

and Planning 

Today’s Presentations on Future Grid Tasks 



Task 1: Direct and Telemetric 
Coupling of Renewable Energy 
Resources with Flexible Loads 

Shmuel Oren 
Anthony Papavasiliou 

UC Berkeley 
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Alternative Demand Response Paradigms 
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Alternative Demand Response Paradigms 



Evaluation Methodology 

• Comparison of alternative approaches to flexible 
loads mobilization requires explicit consideration of 
uncertainty for consistent determination of locational 
reserves. 

• Stochastic unit commitment optimization accounts for 
uncertainty by considering a limited sample of 
probabilistic wind and contingency scenarios, 
committing slow reserves early with fast reserves and 
demand response adjusted after uncertainties are 
revealed. 

• Economic and reliability outcomes are calculated 
using Monte Carlo simulation with large number of 
probabilistic scenarios and contingencies     

14 

 
 



Results and Benefits 

• Developed a stochastic optimization method for 
efficient reserves deployment in an environment 
with high renewables penetration  

• Developed a consistent method for assessing 
alternative demand response integration strategies 
(direct coupling vs. market) 

• Advanced the state of the art for stochastic unit 
commitment at practical scale employing High 
Performance Computing (HPC) 

• Study of how computational time for stochastic 
unit commitment scales with number of processors 
and solution accuracy 
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Model Structure 
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Unit Commitment 

 
 17 



Two Stage Stochastic Unit Commitment 
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Scenario Sample Selection 
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New Scenario Selection Method 
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Wind Modeling and Data Sources 
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Load Variation Represented by Day Types 

 
 22 



Parallelization and HPC Application 
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California Case Study 

• Stochastic Optimization 
captures nearly 50% of gains 
under perfect forecasting of 
load and wind outcomes 

• Direct coupling marginally 
more expensive than a 
centralized market but 
reduces load shedding due 
to better representation of 
load flexibility 

• Transmission constraints can 
play a significant role in 
determining cost and 
resource adequacy  
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Computational Efficiency Study 
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Mitigating Renewables Intermittency 
Through Nondisruptive Load Control 
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Notes: Callaway is the Task leader, dcal@berkeley.edu.  Mathieu is currently a 
postdoctoral scholar in the Power Systems Laboratory at ETH Zurich.  Dyson was not 

funded by the project, but contributed to the resource assessment.  
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Context 

• Renewables integration requires power system 
flexibility (e.g., managing frequency response 
and energy imbalances) 

• Centralized control of load resources could be a 
low cost solution: the grid connected resources 
exist already 

• But the costs could be pushed upward by: 
• Communications & metering infrastructure 

requirements (system operators need high quality 
telemetry data in certain applications) 

• Customer payments (if end-use function has to be 
seriously compromised) 

28 

 
 



Research Goals 

• New methods to model and control aggregations 
of thermostatically-controlled loads (TCLs) that 
• Reduce communications and  

power measurement requirements 
• Minimize temperature deviations 

• Evaluate how different real time  
communications abilities affect 
• Ability to accurately estimate local temperature and 

ON/OFF state of loads 
• Controllability of load resources 

• Analyze TCL resource potential, costs, and 
revenue potential associated with TCL control 

TCLs 
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Basic Residential TCL Control Architecture 

30 

• All control occurs within existing 
TCL temperature deadband 

• Use substation SCADA to measure 
aggregate power consumption 

• Estimate states in aggregation 
model 

• Broadcast control signal,  
possibly via AMI  

dispatch instructions 

• Loads receive 
broadcasted control 
signal and, based 
on current load 
temperature, turn 
ON, OFF or remain 
in current state 
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Aggregated TCL Model 
‘State bin transition model’ 

… 

… 

ON 

OFF 

normalized temperature 

… 

st
at

e 

[Similar to that proposed by Lu and Chassin 2004; Lu et al. 2005;  
Bashash and Fathy 2011; Kundu et al. 2011]  
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… 

… 

Consider thousands of TCLs traveling around  
a normalized temperature dead-band. 

ON 

OFF 

normalized temperature 

… 

st
at

e 

Aggregated TCL Model 
‘State bin transition model’ 
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Divide it into discrete temperature intervals. 

ON 

OFF 

normalized temperature 

… 

… 

st
at

e 

Aggregated TCL Model 
‘State bin transition model’ 
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ON 

OFF 

normalized temperature 

… 

… 

st
at
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Aggregated TCL Model 
‘State bin transition model’ 

Forcing the system: decreasing aggregate power.  
 34 



ON 

OFF 

normalized temperature 

… 

… 

st
at

e 

Aggregated TCL Model 
‘State bin transition model’ 

Forcing the system: increasing aggregate power.  
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Question: How important is real time metering? 

36 

• Reference case: Meter power and temperature at all 
controlled loads, error following dispatch signal = 0.6% RMS 
(smaller is better) 

• Case 1: Meter the ON/OFF state at all loads, measure 
aggregate power at the distribution substation.  
Result: error = 0.76% RMS 

• Case 2: Meter only aggregate power at distribution 
substation. Result: error = 5% RMS 
• Note, this error compares favorably to conventional generators 

All results assume: 
• 17 MVA substation load 
• 15% of load (1,000 TCLs) is controlled 
• Aggregate power measurements include all loads on substation 
• Total substation load can be forecasted with 5% average error 

on a one minute horizon 

Answer: Not important; state estimation works 

 
 



How LARGE is the Resource Potential? 
Estimates for most of California (5 largest utilities) based on Renewable 

Energy Certificates and California Energy Commission data. 

2012 Resource 
Duration Curve 

2020 Resource 
Duration Curve, 

assuming increased 
efficiency and 30% of 
water/space heaters 
converted to electric 

37 
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Central AC
Heat pumps
Water heaters
Refrigerators
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A. 2012 Base Scenario

B. 2020 Base Scenario

C. 2020 Electrification Scenario
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A. 2012 Base Scenario

B. 2020 Base Scenario

C. 2020 Electrification Scenario



Potential Revenues for Regulation and 
Load Following (per TCL per year) 

*Results depend on the climate zone 
 

Note: cost requires a separate analysis! 

    
 
 

Air conditioners*       
Heat pumps*       
Combined AC/HP*  
Water heaters      
Refrigerators      

Regulation 
 

$9-79 
$100-170 
$160-220 

$61 
$25 

Load Following 
 

$2-9 
$9-14 

$16-18 
$35 
$14 
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Uses and Potential Benefits of Results 

• Reduced cost to deploy centralized control of 
loads on distribution circuits 
• AMI could broadcast control signals 
• Substation SCADA may be all that is required for real 

time measurement 
• Roadmap for which loads are best for fast 

demand response 
• Electrification of heating has big benefits 

• Results lay groundwork for demonstration 
• Currently in discussion with several load aggregators 

to run a pilot 
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Summary 

42 

Premises: 
1) Need improved methods for evaluating the operations 

and planning of a future grid with: 
a. High penetrations of renewable sources 
b. Storage and deferrable demand* 

2) Establishing public support for the future grid will require 
that customers see tangible benefits (e.g., lower bills) 

*  Decouples the purchase of electricity from the delivery of an energy service. 
 
Contributions: 
1) Developed  an integrated multi-scale physical and 

economic framework for modeling deferrable demand 
2) Evaluated the effects of stochastic renewable sources 

and deferrable demand on total system costs and 
emissions from generating units (to be completed) 

 
      

 
 



Accomplishments 
1) Developed a model for aggregating customers with electric 

vehicles to determine the maximum hourly charge limited 
by the capacity of chargers and commuting patterns 

2) Developed a model for aggregating buildings with thermal 
storage capabilities for cooling limited by the capacities of 
compressors and the energy stored 

3) Used #1 and #2, in addition to stochastic wind generation, 
as inputs into the SuperOPF, a stochastic form of multi-
period Security Constrained Optimal Power Flow (SCOPF) 

4) Augmented the SuperOPF by adding emission/damage 
coefficients to the operating costs of generating units  

5) Used #1- 4 to simulate the system effects and costs of 
using deferrable demand to mitigate the variability of 
generation from wind sources and reduce emissions  
(to be completed)   
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Context of the Research: 

An Integrated Multi-Scale Framework 

44 

SuperOPF  Costs 

PEV charger capacities  Commuting Patterns  Nodal Capabilities 

Ice storage systems  Buildings  Nodal Capabilities 

Stochastic wind at 16 sites 

North East Test Network 

 
 



 
 

 
 
 
 

70/30 Level I/II 50/50 Level I/II 30/70 Level I/II 

• A 20% penetration of commuters are assumed to use PEVs in the NPCC region. 
• 80% of the PEV load is assigned to valley hours to take advantage of the low prices. 
• The remaining 20% is assigned to shoulder and peak hours to reduce ramping costs 
• The Charging Flexibility Constraint (CFC) may restrict PEV charging during the morning 

commuting hours Valentine, Temple and Zhang (2011)  J. Power Sources    
 

Results I:  
System Load with “Intelligent” Charging of PEVs under Different 

Penetrations of Low and High PEV Charging Rates   
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Results II: 
Percent Reduction in Wholesale Energy Costs Using “Intelligent” 

Charging and Valley-Fill Charging vs. Charging-at-Will 
 

Intelligent Charging 

Valley-fill Charging 

• Charging-at-Will (i.e., commuters charge their PEVs as soon as they arrive at home) is the baseline. 
• Intelligent charging results in significant reductions in the costs compared to charging-at-will and 

valley-fill charging. 
• Percentage reductions in the costs with intelligent charging are higher with higher penetrations of 

PEVs because more PEVs provide a greater capability for modifying wholesale prices and the system 
cost of ramping.   

 
 

Valentine, Temple and Zhang (2011)  J. Power Sources   46 



Results III: 
System Load and System Cost Reductions  
with Price-Responsive Ice Storage Systems 

 

• The system benefits of aggregating Ice Storage Systems in large commercial and 
industrial buildings in New York State were evaluated for the NYCA.  

• Heuristic methods were used to reduce system costs in a two-settlement 
wholesale market that accounts for both the steady-state costs and ramping costs 
of generating units. 

• The optimal management of thermal storage significantly reduces both the peak 
load and total system costs, and also flattens out the daily load profile of 
conventional generating units.  Palacio et al.  In preparation  
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Results IV: 
Structure of the SuperOPF 

OBJECTIVE FUNCTION FOR DAILY OPERATIONS: 
Minimize the expected cost of meeting load, including the costs of load-not-served, 
reserves and ramping, for a set of credible system states over 24 hours subject to:  
1) Network constraints,  
2) Stochastic wind inputs,  
3) Contingencies. 
DETERMINE THE OPTIMUM NODAL VALUES FOR: 
1) Hourly dispatch profiles for generating units, 
2) Amount of wind dispatched/spilled, 
3) Amount of Load-Not-Served, 
4) Up and down reserve capacity, 
5) Amount of ramping, 
6) Nodal energy prices, 
7) Charging/discharging of deferrable demand, 
8) Charging/discharging of collocated storage, 
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APPLIED TO: 
North East Test Network (NET Net) 

Hot Summer Day 

 
 



 
 

Results V:  
Optimum Daily E[Pattern of Generation] for the NET Net 

with and without Wind Capacity Installed 

49 

Case 1: Base Case 2: Base + 29GW Wind 

Case 1: Ramping for the daily load profile is provided by oil and natural 
gas capacity. 
Case 2: Wind displaces mainly oil and natural gas capacity, but this 
conventional capacity provides the additional ramping services needed  
to mitigate the uncertainty of wind generation.  Some wind is spilled. 



Results VI: 
Optimum Daily E[Pattern of Generation] for the NET Net 

with Deferrable Demand or Collocated Storage 

50 

Case 3: Base + 29GW Wind  
             + 33GWh Deferrable Demand  

Case 4: Base + 29GW Wind  
             + 33GWh Collocated Storage 

 
 

Cases 3 & 4 v Case 2: More wind generation is dispatched and the 
daily dispatch profile of conventional generating units is flatter. 
Case 3 v Case 4: More wind generation is dispatched in Case 4 BUT 
the peak system load is lower in Case 3  less congestion on the 
grid and less utility-owned capacity needed to maintain System 
Adequacy  lower capital costs  lower bills for customers. 



Environmental Analysis 
(to be completed) 

• Initially, fixed coefficients were used to link generator 
outputs and emission rates in the SuperOPF, but the 
emission coefficients for carbon are now being modified to 
depend on the generator types and operating conditions.  

• Time-dependent and location-dependent damage 
coefficients are being developed to make it feasible to 
determine how dispatch patterns could be modified to 
reduce the severity of air pollution (e.g., ozone episodes). 

• Using storage and/or deferrable demand may be effective 
ways to mitigate ozone episodes and increase social 
benefits by discharging more energy during critical periods 
when the damage coefficients of the precursor emissions 
are high (primarily NOx).  

 51 

 
 



Potential Benefits 

1) Provide a comprehensive analytical framework  
for evaluating how deferrable demand (electric vehicles 
and buildings with thermal storage) can affect the 
operations and costs of an electric delivery system 

2) Demonstrate how deferrable demand can: 
• Flatten the daily dispatch pattern of conventional generators, 
• Mitigate the variability of wind generation, 
• Reduce ramping costs and maintain reliability, 
• Lower costs to customers, 
• Improve environmental quality (to be completed). 

3) The software is open source, and when it is sufficiently 
robust, it will be added to the programs available with 
MATPOWER <http://www.pserc.cornell.edu/matpower/>.     
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Variable Energy Resources 

George Gross 
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University of Illinois  
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THE  NEED  FOR  A  NEW  SIMULATION  
APPROACH 

 Conventional probabilistic simulation cannot 

capture the time-varying nature and the inter-

temporal effects that characterize storage and 

renewable resources, nor the impacts of  

transmission constraints on market outcomes  

 Moreover, the detailed representation of such 

features is analytically intractable  
55 



THE  NEED  FOR  A  NEW  SIMULATION  
APPROACH 

 We developed a new, comprehensive simulation 

approach using stochastic process representation 

in a Monte Carlo framework 

 Our simulation approach is able to represent the 

uncertainty in and time–varying nature of the 

loads, renewable resource outputs and 

conventional unit available capacities, as well as 

the time-dependent transmission impacts 
56 



THRUST  OF  THE  SIMULATION  APPROACH 

 We developed a comprehensive, computationally 
efficient Monte Carlo simulation approach to emulate 
the behavior of the power system with integrated 
storage and renewable energy resources  

 We model the system load and the resources by 
discrete-time stochastic processes 

 We use a storage scheduler to exploit arbitrage 
opportunities in the storage unit operations  

 We emulate the transmission-constrained hourly day-
ahead markets (DAMs) to determine the power 
system operations in a competitive environment 
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SIMULATION  APPROACH:   
CONCEPTUAL  STRUCTURE 
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THRUST  OF  THE  APPROACH 

 We collect sample paths of the market outcome 

stochastic processes to evaluate the expected 

system variable effects  

 Metrics we evaluate include: 

 nodal electricity prices (LMPs) 

 generation by resource and revenues 

 congestion rents 

 CO 2 emissions 

 LOLP and EUE system reliability indices 
59 



KEY  CONTRIBUTIONS 
 Development of an effective simulation approach 

able to  address power industry challenges 

 Salient features include: 

 quantification of the power system expected 

variable effects – economics, reliability and  

environmental impacts – in each sub-period 

 computationally tractable for practical 

systems 60 



KEY  CONTRIBUTIONS 
 detailed stochastic models of the time–varying 

resources and loads allow the representation of 

spatial and temporal correlations  

 storage scheduler for optimized storage 

operation to exploit arbitrage opportunities 

 representation of  the transmission–

constrained market outcomes 

 flexibility in the representation of the market 

environment/policies in effect 
61 



APPLICATION  AREAS 
 Resource planning studies 

 year of commissioning of a wind farm or 
storage plant 

 siting of a storage unit 
 transmission utilization under deepening 

ADRR implementation 
 Production costing issues 

 impacts of various penetration levels of wind 
and/or storage resources 

 impacts of increases in fossil fuel prices 
62 



APPLICATION  AREAS 

 Transmission utilization issues 

 impacts of renewable storage integration on 

transmission utilization 

 identification of frequently-congested 

transmission lines for use in the construction 

of portfolios of financial transmission rights 
63 



APPLICATION  AREAS 

 Environmental assessments 

 identification of appropriate generation 

resource mix composition to reduce CO2 

emissions by x % by a specified point in time 

 wind and storage resource synergies in terms 

of CO2 emission impacts 
64 



APPLICATION  AREAS 
 Reliability analysis 

 assessment of the effective load carrying 

capability of renewable resource additions 

requirements 

 evaluation of the reserves in a power system 

with deepening levels of renewable penetration 
65 



APPLICATION  AREAS 
 Investment analysis 

 assessment of the expected returns of wind 

resources investments 

 risk assessment of investing in deeper 

penetration of renewable resources 
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APPLICATION  AREAS 
 Policy formulation and analysis 

 incorporation of a ‘cap and trade’ carbon 

market for the US 

 assessment of the impacts of a policy aimed at 

providing financial incentives for the 

retrofitting of old generation units 
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APPLICATION  AREAS 
 Broad range of questions 

 sensitivity studies on storage sizing 

 selection of remuneration schemes for DRRs 

 scenario analysis of the impacts of future 

technology developments 

 various what if questions 
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CASE  STUDY :  DEEPENING  WIND  
PENETRATION 

 The objective of this study is to perform a wind 

penetration sensitivity analysis and to quantify 

the enhanced ability to harness wind resources 

with the addition of a storage energy resource  

 We evaluate the key metrics for variable effect 

assessment, including wholesale purchase 

payments, reliability indices and CO 2 emissions 
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THE  STUDY  TEST  SYSTEM:                  
A  MODIFIED  IEEE  118-BUS  SYSTEM 

 Annual peak load: 8,090.3 MW 

 Conventional generation resource mix: 9,714 MW  

 4 wind farms located in the Midwest with total 

nameplate capacity in multiples of  680 MW 

 A storage unit with  400 MW capacity, 5,000 MWh 

storage capability and 89 % round-trip efficiency 

 Unit commitment uses a 15 % reserves margin provi-

ded by conventional units and the storage resources 

 Wind power is assumed to be offered at 0 $/MWh 
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EXPECTED  WHOLESALE  PURCHASE  
PAYMENTS 
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EXPECTED  CO 2  EMISSIONS 
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ANNUAL  RELIABILITY  INDICES 
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CONCLUDING  REMARKS 

 Storage and wind resources consistently pair well 

together: they reduce wholesale purchase dollars 

and improve system reliability; storage seems to 

attenuate the “diminishing returns” trend seen 

with deeper wind power penetration  

 Additional studies are needed to evaluate the 

impacts of multiple storage units on the power 

system variable effects and the impacts of 

storage siting and sizing 
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