A New Method for Estimating Maximum Power Transfer and Voltage Stability Margins to Mitigate the Risk of Voltage Collapse

Bernie Lesieutre

Dan Molzahn University of Wisconsin-Madison

PSERC Webinar, October 15, 2013

Voltage Stability

Static:

- Loading, Power Flows
- Local Reactive Power Support

Dynamic:

- Component Controls
- Network Controls

OVERVIEW: Static Voltage Stability Margin

A common voltage stability margin measures the distance from a **post-contingency** operating point to the **"nose point"** on a power-voltage curve.

OVERVIEW: Static Voltage Stability Margin

It's even possible that a normal power flow solution won't exist, post contingency.

- 1. We don't know the values on the curve.
- 2. We don't know whether a post-contingency operating point exists!

Typical Approach

- Run post-contingency power flow. This may or may not converge.
- If successful, determine nose point: use a sequence of power flows with increasing load, or a continuation power flow.

Our Approach

Cast as an optimization problem:

• Minimize the controlled voltages while a solution exists. (Claim: a solution exists.)

 Exploit the quadratic nature of the power flow equations to directly obtain Traditional Voltage Stability Margin even when the margin is negative.

Advantages

- Eliminates need for repeated solutions (multiple power flows, continuation power flows)
- Often offers provably **globally** optimal results
- Works when the margin is negative, i.e. when there isn't a solution.

OVERVIEW: Static Voltage Stability Margin

Power Flow Equations: Review

Current "Injection" equations in Rectangular Coordinates: $\begin{bmatrix} (I_{D1} + jI_{Q1}) \\ \vdots \\ (I_{DN} + jI_{QN}) \end{bmatrix} = \begin{bmatrix} G + jB \end{bmatrix} \begin{bmatrix} (V_{D1} + jV_{Q1}) \\ \vdots \\ (V_{DN} + jV_{QN}) \end{bmatrix}$

Power Flow Equations: Review

Power "Injection" equations in Rectangular Coordinates:

$$\begin{bmatrix} (P_1+jQ_1)\\ \vdots\\ (P_N+jQ_N) \end{bmatrix} = \begin{bmatrix} (V_{D1}+jV_{Q1})\\ \ddots\\ (V_{DN}+jV_{QN}) \end{bmatrix} \begin{bmatrix} G-jB \end{bmatrix} \begin{bmatrix} (V_{D1}-jV_{Q1})\\ \vdots\\ (V_{DN}-jV_{QN}) \end{bmatrix}$$

Power Flow Equations

The power flow equations are quadratic in voltage variables:

$$P_{i} = V_{Di} \sum_{k=1}^{N} (G_{ik} V_{Dk} - B_{ik} V_{Qk}) + V_{Qi} \sum_{k=1}^{N} (B_{ik} V_{Dk} + G_{ik} V_{Qk})$$
$$Q_{i} = -V_{Di} \sum_{k=1}^{N} (B_{ik} V_{Dk} + G_{ik} V_{Qk}) + V_{Qi} \sum_{k=1}^{N} (G_{ik} V_{Dk} - B_{ik} V_{Qk})$$

For reference, power engineers almost always express these equations in voltage polar coordinates:

$$P_k = V_k \sum_{i=1}^n V_i \left(G_{ik} \cos \left(\delta_k - \delta_i \right) + B_{ik} \sin \left(\delta_k - \delta_i \right) \right)$$
$$Q_k = V_k \sum_{i=1}^n V_i \left(G_{ik} \sin \left(\delta_k - \delta_i \right) - B_{ik} \cos \left(\delta_k - \delta_i \right) \right)$$

Classical Power Flow Constraints

Bus Type	Specified	Calculated
PQ (load)	<i>P</i> , Q	<i>V,</i> δ
PV (generator)	P, V	Q, δ
Slack	$V, \delta = 0^{\circ}$	<i>P</i> , Q

The "controlled voltages" are the problem-specified slack and generator voltage magnitudes.

Locking the controlled voltages in constant proportion, and allowing them to scale by α , we claim a power solution exists for any power flow injection profile. (subject to the unimportant small print.)

Optimization Problem

- Modify the power flow formulation to (†)
- Slack bus voltage magnitude unconstrained
- PV bus voltage magnitudes scale with slack bus voltage
- Minimize slack bus voltage

(†)
$$V_{\text{slack}}^{\text{opt}} = \min \quad V_{\text{slack}}$$
subject to
$$P_k = V_k \sum_{i=1}^n V_i \left(G_{ik} \cos \left(\delta_k - \delta_i \right) + B_{ik} \sin \left(\delta_k - \delta_i \right) \right) \quad \forall k \in \{ \mathcal{PQ}, \mathcal{PV} \}$$

$$Q_k = V_k \sum_{i=1}^n V_i \left(G_{ik} \sin \left(\delta_k - \delta_i \right) - B_{ik} \cos \left(\delta_k - \delta_i \right) \right) \quad \forall k \in \mathcal{PQ}$$

$$V_k = \alpha_k V_{\text{slack}} \quad \forall k \in \mathcal{PV}$$

Optimization Problem

This optimization problem can be solved many different ways...

- We've been using the convex relaxation formulation for the power flow equations (Lavaei, Low) because we really want (provably) the minimum solution.
- The problem has a feasible solution
- The optimization using the convex relaxation can be solved for a global minimum (and hopefully a feasible power flow solution).

Relaxed Problem Formulation

In Rectangular coordinates, define
$$x = [V_{d1} \dots V_{dN} V_{q1} \dots V_{qN}]^T$$

Then, power flow equations can be written in the form

$$P_{k} = c_{k}^{T}(x \ x^{T})c_{k} = tr(C_{k}W)$$
$$Q_{k} = \bar{c}_{k}^{T}(x \ x^{T})\bar{c}_{k} = tr(\bar{C}_{k}W)$$
$$V_{k}^{2} = tr(M_{k}W)$$

where

$$W = x x^T$$

Which is a rank one matrix by construction.

Relaxed Problem Formulation

The convex relaxation is introduced by relaxing the rank of *W.* With that, we pose the following convex optimization problem:

 $V_{slack}^{opt} = \min V_{slack}$ subject to $P_k = tr(Y_k W)$ $Q_k = tr(\bar{Y}_k W)$ $\alpha_k^2 V_{slack}^2 = tr(M_k W)$

$W \succeq 0$ W is positive semi-definite

Semidefinite Relaxation Example

$$x = \begin{bmatrix} V_{d1} & V_{d2} & \dots & V_{dn} & V_{q1} & V_{q2} & \dots & V_{qn} \end{bmatrix}^T$$

$$= V_{d1}^2 + V_{q1}^2 = V_1^2$$

Semidefinite Relaxation Example

 $= W_{11} + W_{n+1,n+1}$

Bonus result concerning solution to the power flow equations

• The existence of a power flow solution requires

 $V_{\text{slack}}^{\text{opt}} \leq V_0 \quad (\text{Specified slack bus voltage})$

- Necessary, but not sufficient, condition for existence
- Conversely, no solution exists if $V_{\text{slack}}^{\text{opt}} > V_0$
- Sufficient, but not necessary, condition for non-existence

Controlled Voltage Margin

• A controlled voltage margin to the solvability boundary

$$\sigma = \frac{V_0}{\underline{V}_{slack}^{min}}$$

- Upper bound (non-conservative)
- No power flow solution exists for $\sigma < 1$
 - Increasing the slack bus voltage (with proportional increases in PV bus voltages) by at least $\frac{1}{\sigma}$ is required for solution.

Power Injection Margin

• Uniformly scaling all power injections scales

$$\left(V_{\rm slack}^{\rm opt}\right)^2$$

if
$$\left(V_{\text{slack}}^{\text{opt}}\right)^2 = f\left(P_{\text{inj}} + jQ_{\text{inj}}\right)$$

then $\eta\left(V_{\text{slack}}^{\text{opt}}\right)^2 = f\left(\eta\left(P_{\text{inj}} + jQ_{\text{inj}}\right)\right)$

• Uniformly scale power injections until

$$\eta \left(V_{\rm slack}^{\rm opt} \right)^2 = V_0^2$$

- Corresponding η gives a power flow voltage stability margin in the direction of uniformly increasing power injections at constant power factor.
- $\eta < 1$ indicates that no solution exists for the original power flow problem

Power Injection Margin

The power injection margin answers the question

For a given voltage profile, by what factor can we change our power injections (uniformly at all buses) while still potentially having a solution?

Answer:
$$\eta = \left(rac{V_0}{V_{
m slack}^{
m opt}}
ight)^2$$

Examples

- IEEE 14-Bus System
- IEEE 118-Bus System
- Tested many other systems and loadings

Controlled Voltage Margin

Power Injection Margin

IEEE 14 Bus System

Injection Multiplier	Newton- Raphson Converged?	V_0	$V_{ m slack}^{ m opt}$	dim(null(A)
1.000	Yes	1.06	0.5261	2
2.000	Yes	1.06	0.7440	2
3.000	Yes	1.06	0.9112	2
4.000	Yes	1.06	1.0522	2
4.010	Yes	1.06	1.0535	2
4.020	Yes	1.06	1.0548	2
4.030	Yes	1.06	1.0561	2
4.040	Yes	1.06	1.0575	2
4.050	Yes	1.06	1.0588	2
4.055	Yes	1.06	1.0594	2
4.056	Yes	1.06	1.0595	2
4.057	Yes	1.06	1.0597	2
4.058	Yes	1.06	1.0598	2
4.059	Yes	1.06	1.0599	2
4.060	No	1.06	1.0601	2
4.061	No	1.06	1.0602	2
4.062	No	1.06	1.0603	2
4.063	No	1.06	1.0605	2
4.064	No	1.06	1.0606	2
4.065	No	1.06	1.0607	2
5.000	No	1.06	1.1764	2

Voltage Margin

Voltage and Power Injection Margins

Controlled Voltage Margin

Power Injection Margin

IEEE 118 Bus System

Injection	Ranhson	V_{2}	$V_{ m slack}^{ m opt}$	dim(null(A)
Multiplier	Converged?	VO	(lower bound)	
4.00	N/	4.025	0 5724	
1.00	Yes	1.035	0.5724	4
1.50	Yes	1.035	0.7010	4
2.00	Yes	1.035	0.8095	4
2.50	Yes	1.035	0.9050	4
3.00	Yes	1.035	0.9914	4
3.15	Yes	1.035	1.0159	4
3.16	Yes	1.035	1.0175	4
3.17	Yes	1.035	1.0191	4
3.18	Yes	1.035	1.0207	4
3.19	No	1.035	1.0223	4
3.20	No	1.035	1.0239	4
3.21	No	1.035	1.0255	4
3.22	No	1.035	1.0271	4
3.23	No	1.035	1.0287	4
3.24	No	1.035	1.0303	4
3.25	No	1.035	1.0319	4
3.26	No	1.035	1.0335	4
3.27	No	1.035	1.0351	4
3.28	No	1.035	1.0366	4
3.29	No	1.035	1.0382	4
4.00	No	1.035	1.1448	4

Voltage Margin IEEE 118 Bus System

Voltage and Power Injection Margins

Alternate Power Injection Profiles

Power injection margin is in the direction of a uniform, constant-power-factor injection profile

We can alternatively specify any profile that is a linear function of powers and squared voltages

- However, insolvability condition $\eta < 1$ is not necessarily valid

$\max \eta$ subject to	
trace $(\mathbf{Y}_k \mathbf{W}) = f_k \left(P, Q, V^2, \eta \right)$	$\forall k \in \{\mathcal{PQ}, \mathcal{PV}\}$
trace $\left(\bar{\mathbf{Y}}_{k} \mathbf{W} \right) = g_{k} \left(P, Q, V^{2}, \eta \right)$	$orall k \in \{\mathcal{PQ}\}$
trace $(\mathbf{M}_k \mathbf{W}) = \alpha V_0$	$\forall k \in \{\mathcal{PV}\}$
trace $(\mathbf{M}_{slack}\mathbf{W}) = V_0$	
$\mathbf{W} \succeq 0$	

Reactive Power Limits

Previous work models generators as ideal voltage sources

- Detailed models limit reactive outputs
 - Limit-induced bifurcations
- Two approaches to modeling these limits:
 - Mixed-integer semidefinite programming
 - Infeasibility certificates using sum of squares programming

Reactive Power Limits Results

Conclusions

- Cast the problem of computing voltage stability margins as an optimization problem – to minimize the slack bus voltage.
- Calculated voltage stability margins power injection/flows, and controlled voltages.
- Tested with numerical examples

Advantages:

- Eliminates repeated solution (multiple power flows, continuation power flows)
- Often offers provably globally optimal results
- Works when the margin is negative, i.e. when there isn't a solution.

Related Publications

- [1] B.C. Lesieutre, D.K. Molzahn, A.R. Borden, and C.L. DeMarco, "Examining the Limits of the Application of Semidefinite Programming to Power Flow Problems," 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2011, pp.1492-1499, 28-30 Sept. 2011.
- [2] D.K. Molzahn, J.T. Holzer, and B.C. Lesieutre, and C.L. DeMarco, "Implementation of a Large-Scale Optimal Power Flow Solver Based on Semidefinite Programming," To appear in *IEEE Transactions on Power Systems*.
- [3] D.K. Molzahn, B.C. Lesieutre, and C.L. DeMarco, "An Approximate Method for Modeling ZIP Loads in a Semidefinite Relaxation of the OPF Problem," submitted to *IEEE Transactions on Power Systems, Letters.*
- [4] D.K. Molzahn, B.C. Lesieutre, and C.L. DeMarco, "A Sufficient Condition for Global Optimality of Solutions to the Optimal Power Flow Problem," to appear in *IEEE Transactions on Power Systems, Letters.*
- [5] D.K. Molzahn, B.C. Lesieutre, and C.L. DeMarco, "A Sufficient Condition for Power Flow Insolvability with Applications to Voltage Stability Margins," *IEEE Transactions on Power Systems*, Vol 28, No. 3, pp. 2592-2601.
- [6] D.K. Molzahn, V. Dawar, B.C. Lesieutre, and C.L. DeMarco, "Sufficient Conditions for Power Flow Insolvability Considering Reactive Power Limited Generators with Applications to Voltage Stability Margins," presented at *Bulk Power System Dynamics and Control - IX. Optimization, Security and Control of the Emerging Power Grid, 2013 IREP Symposium*, 25-30 Aug. 2013.
- [7] D.K. Molzahn, B.C. Lesieutre, and C.L. DeMarco, "Investigation of Non-Zero Duality Gap Solutions to a Semidefinite Relaxation of the Power Flow Equations," To be presented at the Hawaii International Conference on System Sciences, January 2014.

Questions?

Extra Slides: Feasibility

Feasibility

For lossless systems:

- 1. Show a solution exists for zero power injections at PQ buses and zero active power injection at PV buses, for $\alpha = 1$.
- Use implicit function theorem to argue that perturbations to zero power injections solutions also exist. Specifically choose one in the direction of desired power injection profile.
- 3. Exploit the quadratic nature of power flow equations to scale voltages and power to match injection profile.

Feasibility: Zero Power Injection Solution

Easy: Construct a solution.

- Open Circuit PQ buses for zero power, zero current injection.
- Use Ward-type reduction to eliminate PQ buses. (not really necessary, but clean) small print
- Choose uniform angle solution for all buses.
- Directly use reactive power flow equation to calculated the reactive power injections at generator buses.

$$P_{k} = V_{k} \sum_{i=1}^{n} V_{i} \left(G_{ik} \cos \left(\delta_{k} - \delta_{i} \right) + B_{ik} \sin \left(\delta_{k} - \delta_{i} \right) \right)$$
$$Q_{k} = V_{k} \sum_{i=1}^{n} V_{i} \left(G_{ik} \sin \left(\delta_{k} - \delta_{i} \right) - B_{ik} \cos \left(\delta_{k} - \delta_{i} \right) \right)$$

Note: Zero Power Injection Solutions for Lossy Systems

• Not all systems have a zero-power injection solution

$$P_{\rm PV} = gV_{\rm PV}^2 - V_{\rm PV}V_{\rm slack} \left(g\cos\left(\theta\right) + b\sin\left(\theta\right)\right)$$

- Ability to choose θ such that $P_{PV} = 0$ depends on
- Ratio of V_{PV} to V_{slack}
- Ratio of g to b

$$\left(\frac{V_{PV}}{V_{slack}}\right)^2 \le 1 + \left(\frac{b}{g}\right)^2$$

 Systems with small resistances and small voltage magnitude differences are expected to have a zero power injection solution

Nearby Solutions

A nearby non-zero solution exists

 $f((V_{Di} + jV_{Qi}) + (\Delta V_{Di} + j\Delta V_{Qi})) = \Delta P_i + j\Delta Q_i$

provided the Jacobian is nonsingular. For a connected lossless system at the zero-power injection solution, the appropriate Jacobian is nonsingular, generically.

Feasible Solution

Exploit the quadratic nature of power flow equations to scale voltages to match desired power profile:

 $f(\beta(V_{Di} + jV_{Qi}) + \beta(\Delta V_{Di} + j\Delta V_{Qi})) = \beta^2(\Delta P_i + j\Delta Q_i)$ $= P_i + jQ_i$

Extra Slides: Infeasibility Certificates

Infeasibility Certificates

Guarantee that a system of polynomial is infeasible

$$f_i(x) = 0 \qquad i = 1, \dots, m$$

$$g_i(x) \ge 0 \qquad i = 1, \dots, p$$

Positivstellensatz Theorem

$$ideal(f_1, \dots, f_m) = \left\{ f \mid f = \sum_{i=1}^m t_i f_i, \quad t_i \in \mathbb{R} [x] \right\}$$

$$\operatorname{cone}(g_1, \dots, g_p) = \left\{ g \mid g = s_0 \sum_i g_i + \sum_{\{i,j\}} s_{ij} g_i g_j + \sum_{\{i,j,k\}} s_{ijk} g_i g_j g_k + \cdots \right\}$$

$$\mathsf{If} \quad \begin{array}{c} F(x) \in ideal(f_1, \dots, f_m) \\ G(x) \in \operatorname{cone}(g_i, \dots, g_p) \end{array} \quad \text{such that} \quad F(x) + G(x) = -1 \end{array}$$

then the system of polynomials has no solution

Power Flow in Polynomial Form

Power Injection and Voltage Magnitude Polynomials $P_{i} = f_{Pi} (V_{d}, V_{q}) = V_{di} \sum_{k=1}^{n} (\mathbf{G}_{ik} V_{dk} - \mathbf{B}_{ik} V_{qk}) + V_{qi} \sum_{k=1}^{n} (\mathbf{B}_{ik} V_{dk} + \mathbf{G}_{ik} V_{qk})$ $Q_{i} = f_{Qi} (V_{d}, V_{q}) = V_{di} \sum_{k=1}^{n} (-\mathbf{B}_{ik} V_{dk} - \mathbf{G}_{ik} V_{qk}) + V_{qi} \sum_{k=1}^{n} (\mathbf{G}_{ik} V_{dk} - \mathbf{B}_{ik} V_{qk})$ $V_{i}^{2} = f_{Vi} (V_{d}, V_{q}) = V_{di}^{2} + V_{qi}^{2}$

$$f_{Vi} = (V_i^*)^2 - V_i^- + V_i^+$$

$$Q_i^{max} - f_{Qi} = x_i$$

$$V_i^- x = 0$$

$$V_i^+ (Q_i^{max} - Q_i^{min} - x) = 0$$

$$Q_i^{max} - Q_i^{min} - x \ge 0$$

$$V_i^+ \ge 0, \quad V_i^- \ge 0, \quad x_i \ge 0$$

Reactive Power versus Voltage Magnitude Characteristic

Power Flow Infeasibility Certificates

Find a sum of squares polynomial of the form

$$H\left(V_{d}, V_{q}, x, V^{+}, V^{-}\right) = \tau V_{q,slack} + \sum_{i \in \{\mathcal{PV}, \mathcal{PQ}\}} \lambda_{i} \left(f_{Pi} - P_{i}\right) + \sum_{i \in \mathcal{PQ}} \gamma_{i} \left(f_{Qi} - Q_{i}\right)$$

$$+ \sum_{i \in \{\mathcal{S}, \mathcal{PV}\}} \left\{ \psi_{1i} \left((V_{i}^{*})^{2} - V_{i}^{-} + V_{i}^{+} - f_{Vi} \right) + \psi_{2i} \left(Q_{i}^{max} - f_{Qi} - x_{i} \right) + \psi_{3i} V_{i}^{-} x$$

$$+ \psi_{4i} \left(Q_{i}^{max} - Q_{i}^{min} - x \right) V_{i}^{+} + s_{1i} \left(Q_{i}^{max} - Q_{i}^{min} - x \right) + s_{2i} V_{i}^{+} + s_{3i} V_{i}^{-} + s_{4i} x_{i} \right\}$$

such that

$$\left(-H\left(V_d, V_q, x, V^+, V^-\right) - 1\right)$$
 is sum of squares

by finding polynomials au, λ , γ , ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4

and sum of squares polynomials s_1, s_2, s_3, s_4 Then the power flow equations have no solution.