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Voltage Stability 

Static:  
 - Loading, Power Flows 
 - Local Reactive Power Support 

 
Dynamic: 

 - Component Controls 
 - Network Controls 
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OVERVIEW: Static Voltage Stability Margin 

Power 

Voltage, V 
Margin 

A common voltage stability margin measures the distance from 
a post-contingency operating point to the “nose point” on a 
power-voltage curve. 
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OVERVIEW: Static Voltage Stability Margin 

Power 

Voltage, V 
Margin (negative) 

It’s even possible that a normal power flow solution won’t exist, 
post contingency. 
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ISSUES 

Power 

Voltage, V 
Margin 

1. We don’t know the values on the curve. 
2. We don’t know whether a post-contingency operating point 

exists! 
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Typical Approach 

• Run post-contingency power flow.  This may or 
may not converge. 
 

• If successful, determine nose point: use a 
sequence of power flows with increasing load, or 
a continuation power flow.  
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Our Approach 

Cast as an optimization problem: 
 
• Minimize the controlled voltages while a 
solution exists. (Claim: a solution exists.)  
 

• Exploit the quadratic nature of the power 
flow equations to directly obtain 

Traditional Voltage Stability Margin 
even when the margin is negative. 
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Advantages 

•  Eliminates need for repeated solutions 
(multiple power flows, continuation power flows) 
•  Often offers provably globally optimal results 
•  Works when the margin is negative, i.e. when 
there isn’t a solution. 
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OVERVIEW: Static Voltage Stability Margin 

Power 

Voltage, V 
Margin 

Optimal Solution 

Vopt 

V0 

P0 Pmax 
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Power Flow Equations: Review 

 
Electrical Network 

I = YV 
Y = G+jB 

(ID1+jIQ1) 

(IDN+jIQN) 

(VD1+jVQ1) 

(VDN+jVQN) 

Current “Injection” equations in Rectangular Coordinates:  
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Power Flow Equations: Review 

 
Electrical Network 

I = YV 
Y = G+jB 

(P1+jQ1) 

(PN+jQN) 

(VD1+jVQ1) 

(VDN+jVQN) 

Power “Injection” equations in Rectangular Coordinates:  
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Power Flow Equations 

The power flow equations are quadratic in voltage variables: 
 

For reference, power engineers almost always express 
these equations in voltage polar coordinates: 



13 

Classical Power Flow Constraints 

Bus Type Specified Calculated 

PQ (load) P, Q V, δ 

PV (generator) P, V Q, δ 

Slack V, δ = 0º P, Q 

The “controlled voltages” are the problem-specified 
slack and generator voltage magnitudes.   
 
Locking the controlled voltages in constant 
proportion, and allowing them to scale by α, we claim 
a power solution exists for any power flow injection 
profile. (subject to the unimportant small print.)  
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Optimization Problem 
• Modify the power flow formulation to  
• Slack bus voltage magnitude unconstrained 

• PV bus voltage magnitudes scale with slack bus 
voltage 

• Minimize slack bus voltage 
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This optimization problem can be solved many different 
ways…  

We’ve been using the convex relaxation formulation for 
the power flow equations (Lavaei, Low) because we 
really want (provably) the minimum solution. 

 
• The problem has a feasible solution 
• The optimization using the convex relaxation can be 

solved for a global minimum (and hopefully a feasible 
power flow solution). 

Optimization Problem 
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Relaxed Problem Formulation 

In Rectangular coordinates,  define 
 
 

Then, power flow equations can be written in the form 
 
 
 
 
 
 

where  
 
 

Which is a rank one matrix by construction. 
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Relaxed Problem Formulation 

The convex relaxation is introduced by relaxing the rank of 
W. With that, we pose the following convex optimization 

problem: 
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Semidefinite Relaxation Example 

MISDP 
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Semidefinite Relaxation Example 

MISDP 
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Bonus result concerning solution 
to the power flow equations 

• The existence of a power flow solution requires 

 

 

• Necessary, but not sufficient, condition for existence 

• Conversely, no solution exists if  

• Sufficient, but not necessary, condition for non-existence 
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Controlled Voltage Margin 

• A controlled voltage margin to the solvability 
boundary 

 

• Upper  bound (non-conservative) 

•  No power flow solution exists for 

• Increasing the slack bus voltage (with proportional 
increases in PV bus voltages) by at least      is required 
for solution. 
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Power Injection Margin 
• Uniformly scaling all power injections scales               

 

 

• Uniformly scale power injections until 

 

• Corresponding     gives a power flow voltage stability 
margin in the direction of uniformly increasing power 
injections at constant power factor. 

•            indicates that no solution exists for the original 
power flow problem 
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Power Injection Margin 

The power injection margin answers the question 

For a given voltage profile, by what factor can we 
change our power injections (uniformly at all 
buses) while still potentially having a solution? 

Answer: 
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Examples 
• IEEE 14-Bus System 

• IEEE 118-Bus System 

• Tested many other systems and loadings 
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IEEE 14 Bus System 
Injection 

Multiplier 

Newton-
Raphson 

Converged? 

 
 dim(null(A) 

1.000 Yes 1.06 0.5261 2 
2.000 Yes 1.06 0.7440 2 
3.000 Yes 1.06 0.9112 2 
4.000 Yes 1.06 1.0522 2 
4.010 Yes 1.06 1.0535 2 
4.020 Yes 1.06 1.0548 2 
4.030 Yes 1.06 1.0561 2 
4.040 Yes 1.06 1.0575 2 
4.050 Yes 1.06 1.0588 2 
4.055 Yes 1.06 1.0594 2 
4.056 Yes 1.06 1.0595 2 
4.057 Yes 1.06 1.0597 2 
4.058 Yes 1.06 1.0598 2 
4.059 Yes 1.06 1.0599 2 
4.060 No 1.06 1.0601 2 
4.061 No 1.06 1.0602 2 
4.062 No 1.06 1.0603 2 
4.063 No 1.06 1.0605 2 
4.064 No 1.06 1.0606 2 
4.065 No 1.06 1.0607 2 
5.000 No 1.06 1.1764 2 
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Voltage Margin 
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IEEE 118 Bus System 
Injection 

Multiplier 

Newton-
Raphson 

Converged? 

 
 

 
(lower bound) 

 

dim(null(A) 

1.00 Yes 1.035 0.5724 4 
1.50 Yes 1.035 0.7010 4 
2.00 Yes 1.035 0.8095 4 
2.50 Yes 1.035 0.9050 4 
3.00 Yes 1.035 0.9914 4 
3.15 Yes 1.035 1.0159 4 
3.16 Yes 1.035 1.0175 4 
3.17 Yes 1.035 1.0191 4 
3.18 Yes 1.035 1.0207 4 
3.19 No 1.035 1.0223 4 
3.20 No 1.035 1.0239 4 
3.21 No 1.035 1.0255 4 
3.22 No 1.035 1.0271 4 
3.23 No 1.035 1.0287 4 
3.24 No 1.035 1.0303 4 
3.25 No 1.035 1.0319 4 
3.26 No 1.035 1.0335 4 
3.27 No 1.035 1.0351 4 
3.28 No 1.035 1.0366 4 
3.29 No 1.035 1.0382 4 
4.00 No 1.035 1.1448 4 
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Voltage Margin 
IEEE 118 Bus System 
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Alternate Power Injection Profiles 
Power injection margin is in the direction of a uniform, 

constant-power-factor injection profile 

We can alternatively specify any profile that is a linear 
function of powers and squared voltages 

‒ However, insolvability condition           is not necessarily valid 
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Reactive Power Limits 
Previous work models generators 

as ideal voltage sources 

Detailed models limit  
reactive outputs 

‒ Limit-induced bifurcations 

Two approaches to  
modeling these limits: 

‒ Mixed-integer semidefinite 
programming 

‒ Infeasibility certificates using sum 
of squares programming 
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MISDP Formulation 
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MISDP Formulation 
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MISDP Formulation 
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MISDP Formulation 
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Reactive Power Limits Results 
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Conclusions 
• Cast the problem of computing voltage stability margins as 

an optimization problem – to minimize the slack bus voltage. 

• Calculated voltage stability margins – power injection/flows, 
and controlled voltages. 

• Tested with numerical examples 

Advantages: 

• Eliminates repeated solution (multiple power flows, 
continuation power flows) 

• Often offers provably globally optimal results 

• Works when the margin is negative, i.e. when there isn’t a 
solution. 
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Questions? 
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Extra Slides: Feasibility 
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For lossless systems: 
1. Show a solution exists for zero power injections at 

PQ buses and zero active power injection at PV 
buses, for  α = 1. 

2. Use implicit function theorem to argue that 
perturbations to zero power injections solutions also 
exist.  Specifically choose one in the direction of 
desired power injection profile. 

3. Exploit the quadratic nature of power flow equations 
to scale voltages and power to match injection profile. 

Feasibility 
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Easy: Construct a solution. 
• Open Circuit PQ buses for zero power, zero 

current injection. 
• Use Ward-type reduction to eliminate PQ buses. 

(not really necessary, but clean) small print 

• Choose uniform angle solution for all buses. 
• Directly use reactive power flow equation to 

calculated the reactive power injections at 
generator buses. 

Feasibility: Zero Power Injection 
Solution 

0 

0 

0 
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Note: Zero Power Injection Solutions for 
Lossy Systems 

• Not all systems have a zero-power injection solution 

 

 

 

• Ability to choose θ such that PPV = 0 depends on 

• Ratio of VPV to Vslack 

• Ratio of g to b 

• Systems with small resistances and small voltage magnitude 
differences are expected to have a zero power injection solution 
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A nearby non-zero solution exists 
 
 
provided the Jacobian is nonsingular. For a connected 

lossless system at the zero-power injection solution, 
the appropriate Jacobian is nonsingular, generically.  

small print 

Nearby Solutions 



50 

Exploit the quadratic nature of power flow 
equations to scale voltages to match desired 
power profile: 

 
 

Feasible Solution 
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Extra Slides: Infeasibility Certificates 
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Infeasibility Certificates 
 

 

Guarantee that a system of polynomial is infeasible 

 

Positivstellensatz Theorem 

 

 

 

 

 

 

If such that 

then the system of polynomials has no solution 
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Power Flow in Polynomial Form 
Power Injection and Voltage Magnitude Polynomials 

Reactive Power Limit Polynomials 
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Power Flow Infeasibility Certificates 
 

 

Find a sum of squares polynomial of the form 

 

 

 

 

 

such that 

by finding polynomials 

Then the power flow equations have no solution. 

and sum of squares polynomials 
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