
PSERC Webinar
March 19, 2013

 Outlook for Parallel Computing
in the Electric Power Industry

Siddhartha Kumar Khaitan

Electrical and Computer Engineering
Iowa State University
skhaitan@iastate.edu

mailto:skhaitan@iastate.edu

Presentation Overview

 Acceleration using high performance (parallel) computing (HPC) techniques
 Basics of HPC and parallelization paradigms (shared memory and distributed computing)
 Parallelization approach (task-level and data-level) and parallel solvers
 Applications of HPC (Dynamic security assessment)

 Addressing resource-usage efficiency in HPC using task-scheduling techniques
 Static and dynamic techniques (Master-Slave, Work-Stealing, etc.)

 State-of-the-art HPC languages and their unique features
 C/C++ (MPI, Cilk, OpenMP, Pthread, Hybrid)
 D, JAVA, GO, CHAPEL, X10
 Which one suits your needs?

 Porting legacy code on HPC platforms
 TDPSS: A Scalable Time Domain Power System Simulator for Dynamic Security

Assessment
 Results

2

The Importance of Using HPC

 Most modern day applications are extremely data-
and/or compute-intensive.

 Example 1: Consider N-k contingency analysis with
N= 12000, k =1, k= 2 and 10 seconds/contingency.

 =>Serial execution ~33 hrs and ~23 yrs !
 Example 2: PJM does security assessment for 3,000

contingencies in 15 minutes with 40 processors
 Example 3:YouTube serves 100 million videos/day!
 Example 4: Every month 3 billion photos are uploaded to

Facebook!

 Parallel computing (HPC) is an essential computation
paradigm for today’s applications.

3

Serial Computing Parallel Computing

Serial vs. Parallel Computing

CPU

Processing

Tasks

Output

CPU

Processing
Output

CPU

CPU

CPU

Parallel computing provides much higher throughput!

4

Benefits of Parallel Computing

 By Moore’s law, transistors/chip are increasing, but
due to power limits, it is very difficult to make a
single processor faster.

 Parallel computing provides saving of time/money
 Ability to solve larger problems in same time
 Ability to distribute problems over large number of

processors, which may be situated remotely

Parallelism is the future of computing!

5

Hardware Software

 Parallel hardware for
performing parallel
computations e.g. multi-
core CPU, GPU (graphics
processing unit) or FPGA
(field-programmable gate
array).

 Significant part of the
computation should be
parallelizable to get good
speedups (Amdahl’s law)

 Minimal communication
and synchronization

 Scheduling algorithms
 Specialized parallel

programming languages

Requirements for Parallel Computing
6

Examples of HPC Applications

• Bioinformatics
• Particle physics
• Aerospace
• Defense
• Telecommunication
• Power systems

• ISO New England –for robust unit commitment evaluation
• GE Energy – for improving PSLF simulation performance and capability
• Hydro Quebec – uses the platform provided by OPAL RT technologies for

operation and design
• LLNL (Lawrence Livermore National Laboratory) - for research
• PNNL (Pacific Northwest National Laboratory) - to enhance energy

infrastructure and operations
• Walmart, FedEx, Motorola, Whirlpool, Portland Cement Association,

etc.

 Here we focus on dynamic security assessment in power systems.

7

HPC is available through cloud (e.g. Amazon
aws.amazon.com/hpc-applications/), Penguin
Computing (penguincomputing.com), IBM, etc.
HPC Systems are provided by IBM, Intel, etc.,
and installed by Penguin Computing, Dell, etc.

http://aws.amazon.com/hpc-applications/
http://www.penguincomputing.com/

Power System Security Assessment (SA)

 SA is important for avoiding overloads, voltage
instability, transient instability, cascading outages,
and blackouts

 The service cost of one hour of downtime in credit
card authorization is $2,600,000!

 To avoid it, contingency analysis is performed.
 Analyzing a large number of contingencies requires

high computation power
 Parallelization and HPC techniques necessary to get

high throughput.

8

Issues in Parallel Computing Programming
9

 Memory Architectures (Shared, Distributed, Hybrid)
 Programming Models (Shared, Distributed, Hybrid)
 Type of Parallelization (Data/Task)
 Load Balancing
 Synchronization/Communication
 Programming Languages
 Memory per Core
 Latency/Bandwidth
 Cost (Price of parallel processors (servers up to 16 cores) ranges between

$400 to $4,700)
 http://www.cpu-

world.com/Price_Compare/Server_CPU_prices_%28latest%29.html
 http://www.newegg.com/Processors-Servers/SubCategory/ID-727

http://www.cpu-world.com/Price_Compare/Server_CPU_prices_(latest).html
http://www.cpu-world.com/Price_Compare/Server_CPU_prices_(latest).html
http://www.newegg.com/Processors-Servers/SubCategory/ID-727

Parallelization Paradigms

How parallelization is implemented

• Shared memory

- Different processors/threads share main memory

• Distributed memory (distributed computing)
- Each processor has its own memory

• Hybrid approach

• PGAS (Partitioned Global Address Space)

10

Shared Memory Computing

 Different cores/threads share memory
 Example: multithreading in languages such as Java,

D, OpenMP, Go, Cilk.

Memory

Thread 1 Thread 2
Core Memory

11

Threads share memory

Core

Core

Core

Cores share memory

Distributed Computing

 Different processors use different memory spaces
and communicate with each other through messages

 Example: MPI (Message Passing Interface).

Memory Memory Memory

Node 0 Node 1 Node K-1

Network

0
Process

Index 1 K-1

Core Core Core

12

Distributed Computing Shared Memory Computing

 Easier to scale to tens or
thousands of processors (e.g.
supercomputer).

 Sharing is through explicit
communication

 Latency between
communication nodes is a
prime concern

 Difficult to scale to large
number of cores.

 Maintaining integrity of
shared data is challenging.
Need of locks, mutex, etc.

 Low latency of data
sharing

A Comparison
13

Hybrid Approach

 Shared memory computing on single processor and
distributed computing across processors.

 Example: multithreading in single processor, with
MPI across processors

Memory

Thread
0

Memory Memory

Node 0 Node 1 Node K-1

MPI Communication

0
Process

ID 1 K-1

Multi-
threading

MPI

Thread
1

Thread
0

Thread
1

Thread
0

Thread
1

14

PGAS (Partitioned Global Address Space)
Memory Architecture

 Shared memory approach does not scale well beyond tens
of cores while distributed memory approach with message
passing incurs overhead of communication

 PGAS assumes a global memory address space that is
logically partitioned

 A portion of the memory is local to each process or
thread.

 Portions of the shared memory space may have an
affinity for a particular process, thereby exploiting
locality of reference.

15

of
Threads

of
Memories

Non-local Access
Supported

Serial 1 1 N/A

Shared
(OpenMP) p 1 N/A

Distributed
(MPI) p p

No. Message
passing reqd.

PGAS p q Yes

A Comparison

A thread can access the
 memory at other process
without message passing!

16

An Example for Visualization of
Parallel Programming Paradigms

Assume a computation
C = A + kB

where k is scalar and A, B and C are vectors

C

A

B

=

+

k
Reference: http://chapel.cray.com/presentations.html 17

Distributed

C
A

B
k

=

+

=

+

=

+

=

+

k k k

Shared

C
A

B

=

+

=

+

=

+

=

+

k

Hybrid

C
A

B

=

+

=

+

=

+

=

+

k

=

+

=

+

=

+

=

+

k k k 18

Task-Level Parallelization Data-Level Parallelization

• Different tasks are given
to different processors.

• 10,000 contingencies and
4 processors: 2,500
contingencies to each
processor.

• Different phases or data
portions processed by
different processors.

• An array of 10,000
elements and 4
processors: 2500
elements to each
processor.

Parallelization Approaches
19

Example: Summing 4 Arrays (A, B, C, D)
of Length N

1 to N/4

N/4+1 to N/2

N/2+1 to 3N/4

3N/4+1 to N

sum1

sum2

sum3

sum4

Result

For all arrays

For all arrays

For all arrays

For all arrays

Array A

Array B

Array C

Array D

sumA

sumB

sumC

sumD

Result

For 1 to N

For 1 to N

For 1 to N

For 1 to N

Data Parallelism Task Parallelism

20

Communication Synchronization
21

1. Should be minimum
2. Most parallel problems

require
communication

3. Cost of communication
should be low

4. Best if communication
overlaps with
computation.

1. Should be minimum to
allow maximum
independent progress
and avoid
dependencies

2. Barriers and locks are
used to enforce
synchronization to
protect shared data

3. Lack of it may lead to
violation of shared
data and wrong results

Task-Scheduling Techniques for Addressing
Resource-Usage Efficiency in HPC

• Static scheduling
technique

• Dynamic scheduling
technique
• Master-Slave

scheduling (MSS)
• Work-Stealing

scheduling

Example: Variation in Contingency
 Simulation Time

22

Static Scheduling

Main Idea:

• Statically assign tasks to available processors.

• The finish time of the schedule is the time when

the last job finishes.

23

Reference: gridoptics.pnnl.gov/docs/3_Khaitan.pdf

P1 P2 P3 Pn

Initially tasks are
equally distributed.

T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T

P1 P2 P3 Pn

As time passes…

T
T
T
T

T
T
T
T
T
T
T
T

T
T
T
T
T

T
T
T
T
T
T
T
T

P1 P2 P3 Pn

Free waiting T
T
T

T
T
T
T
T
T

T
T
T
T
T
T P3 has to wait for

 last-finishing processor…

24

Master-Slave Scheduling

Main Idea:

• One processor is used as the master and others as

slaves.
• Master assigns tasks to each of the slaves.
• When a slave finishes a task, it requests new task

from the master.
• The finish time of the schedule is the time when

the last job finishes.

25

Reference: gridoptics.pnnl.gov/docs/3_Khaitan.pdf

P1

T

Master P2 Pn-1

Before beginning master has all the tasks.

P1 Master P2 Pn-1

Initially master assigns task to each slave.
Running

tasks

T
T
T
T
T
T
T

T T T T
T
T
T
T

P1 Master P2 Pn-1

Running
tasks T T T

T
T
T
T T request

response
P2 sends request and

Master allocates a task to P2

Multiple slaves may demand tasks=> contention. Locking required 26

Work-Stealing Based Scheduling

Main Idea:
• All tasks hold task-queues and start their work.
• A free node (“thief”) steals tasks from another

node (“victim”), which has excess tasks.
• Uses double-ended queue: stealing request can be

addressed without waiting for finishing of current
task.

• Efficient in space, time and communication
overhead[1].

27

[1] R. Blumofe,C. Leiserson, “Scheduling multithreaded computations by work stealing”, JACM 1999.
[2] gridoptics.pnnl.gov/docs/3_Khaitan.pdf

P1 P2 P3 Pn

Initially tasks are
equally distributed.

T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T

P1 P2 P3 Pn

As time passes…

T
T
T
T

T
T
T
T
T
T
T
T

T
T
T
T
T

T
T
T
T
T
T
T
T

P1 P2 P3 Pn

T
T
T

T
T
T
T
T
T

T
T
T
T
T
T

P3 is free, steals tasks from P2.
NOTE: P2 is not interrupted!

T

To avoid multiple
processors stealing,

 lock is required.

28

- No overhead of scheduling
- Good if tasks lengths equal

Master-Slave Scheduling

Work-Stealing Scheduling

- Very poor load balancing in worst-
case

- Free processors have to wait when
done

Static Scheduling

- Overcomes limitation of static
scheduling

- No communication b/w slaves =>
low overhead

- Master becomes busy and
performs no useful work

- If multiple slaves request from
master simultaneously=>
contention.

- No contention at master
- No wastage of a processor

- Each processor can communicate
with any other processor: special
topology required.

- Termination-detection more
challenging.

Advantages Disadvantages

29

State-of-the-Art HPC Languages
and their Unique Features

Several languages facilitate writing parallel programs.
They have different unique features and limitations:
• C/C++ (MPI, Cilk, OpenMP, Pthread)
• JAVA
• D
• GO
• CHAPEL
• X10
 Which one suits your needs?

30

MPI

 Distributed computing
 Highly scalable, used in

large clusters and
supercomputers

 Open source, based on
C++ or Fortran

 De facto standard in
industry

 Limitations:
 Overhead of message passing
 Does not provide global view

of memory

MPI_Init (&argc, &argv); // starts MPI

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 // get current process id

 MPI_Comm_size (MPI_COMM_WORLD, &size);
 // get number of processes

 printf(“From process %d of %d\n", rank, size);

 MPI_Finalize();

Code Snippet

31

OpenMP

 Multithreaded programming
 Uses mostly compiler

directives.
 Advantage of incremental

programming without
disturbing existing code =>
Easy to debug

 Very useful for parallelizing
legacy code, Open source

 Easy to learn since it is based
on C++ or Fortran

 Limitations:
 Does not scale to hundreds of

cores

#pragma omp parallel for
for (int i = 0; i <= 10000; i++)
 {
 doWork(i); //all instances of doWork(i) run
concurrently
 }

Code Snippet

32

X10 (From IBM)

 Aims to improve
productivity and
portability of high-end
computing systems

 Open source, Object-
oriented

 Higher level
programming model
than MPI

 Supports PGAS
 Limitations:
 Still being developed

finish // wait till all inside functions have finished
{
for(i =0; i< 10; i++)
{
 val ii = i;
 async doWork (i); //all instances of doWork(i)
run concurrently
}
}

Code Snippet

33

Comparison of Languages

Language/Add-
on Library Paradigm Garbage Collection

Open-
Source VM/Native

Cilk Library Shared N/A No Native

MPI Library Distributed N/A Yes Native

OpenMP Library Shared N/A Yes Native

Pthread Library Shared N/A Yes Native

Java Language Shared Yes Yes VM

D Language Shared Yes Yes Native

Go Language Both Yes Yes Native

Chapel Language Both No Yes Native

X10 Language Both Yes Yes
Both

possible

34

This is nice but… How to port my
legacy application code to HPC?

Challenges of Porting Legacy Code to HPC

• Legacy code are generally written in C/Fortran
• They are large (e.g. millions of lines of code)
• They are complex (e.g. mathematical software)
• Rewriting the code in a new language may introduce bugs!
• Time and money overhead of porting may be huge!
• Maintaining legacy code requires technical experts

Thus, porting needs to be done carefully!

35

Porting Legacy Application to HPC

 Method 1: Direct code integration and interfacing
with parallelization routine.

 Method 2: Using program binary as a task in the
parallelization routine.

 We now compare their relative advantages…

36

A Comparison

Direct code integration
 Initialization & finishing

are done only once
 May not be possible on

some platforms
 Requires much more

effort to implement, esp.
for large codes

 Summary: Efficient but
requires large effort

Using program binary
 Initialization & finishing

are done each time
 Possible on most

platforms
 Easy to implement

 Summary: Less efficient
but easy to implement

37

TDPSS: A Scalable Time Domain Power System
Simulator for Dynamic Security Assessment

38

 A research grade simulator for steady state and
dynamic contingency analysis
 Provides models for different power system components
 Provides different numerical solvers
 Designed with object oriented programming
 Validated against commercial software packages
 Allows easy exploration!

 Parallelization
 For the solution of a single contingency (Data Parallelism)
 Across multiple contingencies (Task Parallelism)

N1

T

T

T

T

T

T

T

T

T

T

T

T

N2

Nn
T

Contingency
 List

Contingency
Parallelization

N3 C2

C1

C3

C4

Parallel
DAE Solution

Ni Nodes

Ci Core

Hierarchical Design of the Parallel TDPSS Simulator

39

Computational Steps
in Time Domain Simulation

40

Results for Different HPC Characteristics
41

 Memory Architectures (shared, distributed, hybrid)
 Programming Models (shared, MPI)
 Type of Parallelization (Data/task)
 Load Balancing
 Synchronization/Communication
 Programming Languages

Data Parallelism
42

Parallel linear solvers and integration methods are key.

IDAS

Clear benefit from SuperLU_MT with 2-5
threads; problem size too small for using
more

SuperLu 2.0 with
pthreads

Ansel Linux at
LLNL w/ 1 node w/
2 x 6 core Intel
Xeon

Initial Results with threaded SuperLU_MT

Collaboration with LLNL : C. Woodward , S. Smith and L. Min

43

Task Parallelism
(Parallelism by Contingency)

• Intra-contingency parallelism (Linear Solver)
• Distributed computing (Cystorm Super Computer)

• Distributed (MPI)
• Hybrid (MPI+Ptheads)
• PGAS (X10)

• Shared memory multicore computing
• Multithreading

• Schedulers with direct code integration (X10)
• Schedulers using binary (JAVA, X10, Chapel, D, Go)

• Scheduler using Linux system calls and binary

44

Master-Slave (MPI) and Work-Stealing (MPI+Multithreaded)
 Weak scaling w.r.t. 8 processors - Speedup vs. #processors

Number of processors

S
p

ee
d

u
p

Distributed Memory Architecture

Speedup is defined as S(C, P) =T(C, 8)/T(C,P)

45

X10 Scheduler:
Flow diagram

C1 C2 C3 Cn

Stability Analysis
Failure Detection

System Model

 DAE Kernel
1. Integrator
2. Nonlinear Solver
3. Linear Solver

Feedback

Scheduler

Contingency List

T1 T2 Tp

schedule

Processor

Threads

Software

Hardware

Shared Memory Architecture

46

X10: Master-Slave and Work-Stealing
 (Speedup Over Serial Execution)

Shared Memory Architecture

47

Scheduler Code

Compiled Code
in Bytecode

Java compiler

Main
Thread

(started by
JVM)

Java Virtual
 Machine (JVM)

T1 T2 TN

T1 T2 TN

T1 T2 TN

Threads
started

Time

Program End

Initialization

Finalization

Each thread
performs its task

Porting Legacy Codes

JAVA Scheduler:
Flow diagram

48

JAVA: Master-Slave, Static and Work-Stealing
 (Simulation Time in Seconds)

49

Summary

 Parallel programming is a promising approach for
accelerating computation-intensive application.

 Effective scheduling techniques are important for
achieving load-balancing.

 Choice of programming language is important for
efficient implementation on different architectures.

 Accelerating legacy code requires special approaches.
 HPC can significantly improve computational speed

for security assessment.

50

Selected Publications

 Khaitan, S. and McCalley, J. D., “Dynamic Load Balancing and Scheduling for Parallel Power System
Dynamic Contingency Analysis” High Performance Computing in Power and Energy Systems, Springer-
Verlag Inc., 2012.

 Khaitan, S. and McCalley, J. D., “High Performance Computing for Power System Dynamic Simulation”
High Performance Computing in Power and Energy Systems, Springer-Verlag 2012.

 Khaitan, S. and McCalley, J. D., "Parallelization and Load Balancing Techniques for HPC” Encyclopedia
of Business Analytics and Optimization, 2014 (to appear).

 Khaitan, S. and McCalley, J. “EmPower: An Efficient Load Balancing Approach For Massive Dynamic
Contingency Analysis in Power Systems” in in 2nd HiPCNA-PG, SC12, 2012.

 Khaitan, S. and McCalley, J. “TDPSS: A Scalable Time Domain Power System Simulator For Dynamic
Security Assessment” in 2nd HiPCNA-PG, SC12, 2012.

 Khaitan, S. and McCalley, J. “Parallelizing Power System Contingency Analysis Using D Programming
Language” in IEEE PES-GM 2013.

 Under Review
 Khaitan, S., McCalley, J. D., and Somani, A. “Proactive Task Scheduling and Stealing in Master-Slave

Based Load Balancing for Parallel Contingency Analysis”, Submitted.
 Khaitan, S. and McCalley, J. D. “IMPACT: A Constraint-Aware Scheduling and Load-Balancing

Technique for Parallel Contingency Analysis”, Submitted.
 Khaitan, S. and McCalley, J. D., "MASTER: A JAVA Based Multithreaded Work-Stealing Technique for

Parallel Contingency Analysis in Power Systems", Submitted.

51

Questions and comments are welcome

Thank you very much!

Siddhartha K. Khaitan
skhaitan@iastate.edu

52

mailto:skhaitan@iastate.edu

	� Outlook for Parallel Computing in the Electric Power Industry
	Presentation Overview
	The Importance of Using HPC
	Serial vs. Parallel Computing
	Benefits of Parallel Computing
	Requirements for Parallel Computing
	Examples of HPC Applications
	Power System Security Assessment (SA)
	Issues in Parallel Computing Programming
	Parallelization Paradigms
	Shared Memory Computing
	Distributed Computing
	A Comparison
	Hybrid Approach
	PGAS (Partitioned Global Address Space) Memory Architecture
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Parallelization Approaches
	Example: Summing 4 Arrays (A, B, C, D) �of Length N
	Communication Synchronization
	Task-Scheduling Techniques for Addressing Resource-Usage Efficiency in HPC
	Static Scheduling
	Slide Number 24
	Master-Slave Scheduling
	Slide Number 26
	Work-Stealing Based Scheduling
	Slide Number 28
	Slide Number 29
	State-of-the-Art HPC Languages and their Unique Features
	MPI
	OpenMP
	X10 (From IBM)
	Comparison of Languages
	Slide Number 35
	Porting Legacy Application to HPC
	A Comparison
	TDPSS: A Scalable Time Domain Power System Simulator for Dynamic Security Assessment
	Slide Number 39
	Computational Steps �in Time Domain Simulation
	Results for Different HPC Characteristics
	Data Parallelism
	Clear benefit from SuperLU_MT with 2-5�threads; problem size too small for using more
	Task Parallelism �(Parallelism by Contingency)
	Distributed Memory Architecture
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Summary
	Selected Publications
	Questions and comments are welcome

