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Presentation Overview 

 Acceleration using high performance (parallel) computing (HPC) techniques 
 Basics of HPC and parallelization paradigms (shared memory and distributed computing) 
 Parallelization approach (task-level and data-level) and parallel solvers 
 Applications of HPC (Dynamic security assessment) 

 Addressing resource-usage efficiency in HPC using task-scheduling techniques 
 Static and dynamic techniques (Master-Slave, Work-Stealing, etc.) 

 State-of-the-art HPC languages and their unique features 
 C/C++ (MPI, Cilk, OpenMP, Pthread, Hybrid) 
 D, JAVA, GO, CHAPEL, X10  
 Which one suits your needs?  

 Porting legacy code on HPC platforms 
 TDPSS:  A Scalable Time Domain Power System Simulator for Dynamic Security 

Assessment 
 Results 
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The Importance of Using HPC 

 Most modern day applications are extremely data- 
and/or compute-intensive. 

 Example 1: Consider N-k contingency analysis with  
N= 12000, k =1, k= 2 and 10 seconds/contingency. 

 =>Serial execution ~33 hrs and ~23 yrs ! 
 Example 2: PJM does security assessment for 3,000 

contingencies in 15 minutes with 40 processors 
 Example 3:YouTube serves 100 million videos/day! 
 Example 4: Every month 3 billion photos are uploaded to 

Facebook! 
 

 Parallel computing (HPC) is an essential computation 
paradigm for today’s applications. 
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Serial Computing Parallel Computing 

Serial vs. Parallel Computing 

CPU 

Processing 

Tasks 

Output 

CPU 

Processing 
Output 

CPU 

CPU 

CPU 

Parallel computing provides much higher throughput! 
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Benefits of Parallel Computing 

 By Moore’s law, transistors/chip are increasing, but 
due to power limits, it is very difficult to make a 
single processor faster. 
 

 Parallel computing provides saving of time/money 
 Ability to solve larger problems in same time 
 Ability to distribute problems over large number of 

processors, which may be situated remotely 

Parallelism is the future of computing! 
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Hardware Software 

 Parallel hardware for 
performing parallel 
computations e.g. multi-
core CPU, GPU (graphics 
processing unit) or FPGA 
(field-programmable gate 
array). 
 

 Significant part of the 
computation should be 
parallelizable to get good 
speedups (Amdahl’s law) 

 Minimal communication 
and synchronization 

 Scheduling algorithms 
 Specialized parallel 

programming languages 

Requirements for Parallel Computing 
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Examples of HPC Applications 

• Bioinformatics 
• Particle physics 
• Aerospace  
• Defense 
• Telecommunication 
• Power systems 

• ISO New England –for robust unit commitment evaluation 
• GE Energy – for improving PSLF simulation performance and capability 
• Hydro Quebec – uses the platform provided by OPAL RT technologies for 

operation and design 
• LLNL (Lawrence Livermore National Laboratory ) - for research 
• PNNL (Pacific Northwest National Laboratory) - to enhance energy 

infrastructure and operations 
• Walmart, FedEx, Motorola, Whirlpool, Portland Cement Association, 

etc. 
 
 Here we focus on dynamic security assessment in power systems. 

7 

HPC is available through cloud (e.g. Amazon 
aws.amazon.com/hpc-applications/), Penguin 
Computing (penguincomputing.com), IBM, etc. 
HPC Systems are provided by IBM, Intel, etc., 
and installed by Penguin Computing, Dell, etc. 

http://aws.amazon.com/hpc-applications/
http://www.penguincomputing.com/


Power System Security Assessment (SA) 

 SA is important for avoiding overloads, voltage 
instability, transient instability, cascading outages, 
and blackouts 

 The service cost of one hour of downtime in credit 
card authorization is $2,600,000! 

 To avoid it, contingency analysis is performed. 
 Analyzing a large number of contingencies requires 

high computation power 
 Parallelization and HPC techniques necessary to get 

high throughput. 
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Issues in Parallel Computing Programming 
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 Memory Architectures (Shared, Distributed, Hybrid) 
 Programming Models (Shared, Distributed, Hybrid) 
 Type of Parallelization (Data/Task) 
 Load Balancing 
 Synchronization/Communication 
 Programming Languages 
 Memory per Core 
 Latency/Bandwidth  
 Cost (Price of parallel processors (servers up to 16 cores) ranges between 

$400 to $4,700) 
 http://www.cpu-

world.com/Price_Compare/Server_CPU_prices_%28latest%29.html 
 http://www.newegg.com/Processors-Servers/SubCategory/ID-727 

 
 

 
 
 

 
 
 

http://www.cpu-world.com/Price_Compare/Server_CPU_prices_(latest).html
http://www.cpu-world.com/Price_Compare/Server_CPU_prices_(latest).html
http://www.newegg.com/Processors-Servers/SubCategory/ID-727


Parallelization Paradigms 

How parallelization is implemented 
 
• Shared memory  

-   Different processors/threads share main memory 
 

• Distributed memory (distributed computing) 
-   Each processor has its own memory 
 

• Hybrid approach 
 

• PGAS (Partitioned Global Address Space) 
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Shared Memory Computing 

 Different cores/threads share memory 
 Example: multithreading in languages such as Java, 

D, OpenMP, Go, Cilk.  

Memory 

Thread 1 Thread 2 
Core Memory 

11 

Threads share memory 

Core 

Core 

Core 

Cores share memory 



Distributed Computing 

 Different processors use different memory spaces 
and communicate with each other through messages 

 Example: MPI (Message Passing Interface).  
 

Memory Memory Memory 

Node 0 Node 1 Node K-1 

Network 

0 
Process  

Index 1 K-1 

Core Core Core 
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Distributed Computing Shared Memory Computing 

 Easier to scale to tens or 
thousands of processors (e.g. 
supercomputer). 

 Sharing is through explicit 
communication 

 Latency between 
communication nodes is a 
prime concern 

 Difficult to scale to large 
number of cores. 

 Maintaining integrity of 
shared data is challenging. 
Need of locks, mutex, etc.   

 Low latency of data 
sharing 

 

 

A Comparison 
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Hybrid Approach 

 Shared memory computing on single processor and 
distributed computing across processors. 

 Example: multithreading in single processor, with 
MPI across processors 

Memory 

Thread  
0 

Memory Memory 

Node 0 Node 1 Node K-1 

MPI Communication 

0 
Process  

ID  1 K-1 

Multi- 
threading 

MPI 

Thread  
1 

Thread  
0 

Thread  
1 

Thread  
0 

Thread  
1 
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PGAS (Partitioned Global Address Space) 
Memory Architecture 

 Shared memory approach does not scale well beyond tens 
of cores while distributed memory approach with message 
passing incurs overhead of communication 

 PGAS assumes a global memory address space that is 
logically partitioned  

 A portion of the memory is local to each process or 
thread. 

 Portions of the shared memory space may have an 
affinity for a particular process, thereby exploiting 
locality of reference.  
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# of 
Threads 

# of 
Memories 

Non-local Access 
Supported 

Serial 1 1 N/A 

Shared 
(OpenMP) p 1 N/A 

Distributed 
(MPI) p p 

No. Message 
passing reqd. 

PGAS p q Yes 

A Comparison 

A thread can access the 
 memory at other process 
without message passing! 
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An Example for Visualization of  
Parallel Programming Paradigms 

Assume a computation 
C = A + kB 

where k is scalar and A, B and C are vectors 

C 

A 

B 

= 

+ 

k 
Reference: http://chapel.cray.com/presentations.html 17 
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Task-Level Parallelization Data-Level Parallelization 

• Different tasks are given 
to different processors. 

• 10,000 contingencies and 
4 processors: 2,500 
contingencies to each 
processor. 

 

• Different phases or data 
portions processed by 
different processors. 

• An array of 10,000 
elements and 4 
processors: 2500 
elements to each 
processor. 
 

 

 

Parallelization Approaches 
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Example: Summing 4 Arrays (A, B, C, D)  
of Length N 

1 to N/4 

N/4+1 to N/2 

N/2+1 to 3N/4 

3N/4+1 to N 

sum1 

sum2 

sum3 

sum4 

Result 

For all arrays 

For all arrays 

For all arrays 

For all arrays 

Array A 

Array B 

Array C 

Array D 

sumA 

sumB 

sumC 

sumD 

Result 

For 1 to N 

For 1 to N 

For 1 to N 

For 1 to N 

Data Parallelism Task Parallelism 
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Communication                 Synchronization  
21 

1. Should be minimum   
2. Most parallel problems 

require 
communication 

3. Cost of communication 
should be low 

4. Best if communication 
overlaps with 
computation. 

 

1. Should be minimum to 
allow maximum 
independent progress 
and avoid 
dependencies 

2. Barriers and locks are 
used to enforce 
synchronization to 
protect shared data 

3. Lack of it may lead to 
violation of shared 
data and wrong results  



Task-Scheduling Techniques for Addressing 
Resource-Usage Efficiency in HPC 

• Static scheduling 
technique 

• Dynamic scheduling 
technique 
• Master-Slave 

scheduling (MSS) 
• Work-Stealing 

scheduling 
 
 

Example: Variation in Contingency 
 Simulation Time 
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Static Scheduling 

Main Idea: 
 
• Statically assign tasks to available processors. 

 
• The finish time of the schedule is the time when 

the last job finishes. 
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Reference: gridoptics.pnnl.gov/docs/3_Khaitan.pdf 
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Master-Slave Scheduling 

Main Idea: 
 
• One processor is used as the master and others as 

slaves. 
• Master assigns tasks to each of the slaves. 
• When a slave finishes a task, it requests new task 

from the master. 
• The finish time of the schedule is the time when 

the last job finishes. 
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P1 

T 

Master P2 Pn-1 

Before beginning master has all the tasks. 

P1 Master P2 Pn-1 

Initially master assigns task to each slave. 
Running  

tasks 
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P1 Master P2 Pn-1 

Running  
tasks T T T 

T 
T 
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T T request 

response 
P2 sends request and  

Master allocates a task to P2 

Multiple slaves may demand tasks=> contention. Locking required 26 



Work-Stealing Based Scheduling 

Main Idea: 
• All tasks hold task-queues and start their work. 
• A free node (“thief”) steals tasks from another 

node (“victim”), which has excess tasks. 
• Uses double-ended queue: stealing request can be 

addressed without waiting for finishing of current 
task. 

• Efficient in space, time and communication 
overhead[1]. 

27 

[1] R. Blumofe,C. Leiserson, “Scheduling multithreaded computations by work stealing”, JACM 1999. 
[2] gridoptics.pnnl.gov/docs/3_Khaitan.pdf 
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- No overhead of scheduling 
- Good if tasks lengths equal  

Master-Slave Scheduling 

Work-Stealing Scheduling 

- Very poor load balancing in worst-
case 

- Free processors have to wait when 
done 

Static Scheduling 

- Overcomes limitation of static 
scheduling 

- No communication b/w slaves => 
low overhead 

- Master becomes busy and 
performs no useful work 

- If multiple slaves request from 
master simultaneously=> 
contention. 

- No contention at master 
- No wastage of a processor  

- Each processor can communicate 
with any other processor: special 
topology required. 

- Termination-detection more 
challenging. 

Advantages Disadvantages 
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State-of-the-Art HPC Languages 
and their Unique Features 

Several languages facilitate writing parallel programs. 
They have different unique features and limitations: 
• C/C++ (MPI, Cilk, OpenMP, Pthread) 
• JAVA  
• D 
• GO 
• CHAPEL 
• X10  
                               Which one suits your needs?  
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MPI 

 Distributed computing 
 Highly scalable, used in 

large clusters and 
supercomputers 

 Open source, based on 
C++ or Fortran 

 De facto standard in 
industry  

 Limitations: 
 Overhead of message passing 
 Does not provide global view 

of memory 

 
 

MPI_Init (&argc, &argv); // starts MPI  
 
  MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 // get current process id  
 
  MPI_Comm_size (MPI_COMM_WORLD, &size);
 // get number of processes  
 
  printf( “From process %d of %d\n", rank, size ); 
 
  MPI_Finalize();  

Code Snippet 
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OpenMP 

 Multithreaded programming 
 Uses mostly compiler 

directives. 
 Advantage of incremental 

programming without 
disturbing existing code => 
Easy to debug 

 Very useful for parallelizing 
legacy code, Open source  

 Easy to learn since it is based 
on C++ or Fortran 

 Limitations: 
 Does not scale to hundreds of 

cores 
 
 
 

#pragma omp parallel for 
for (int i = 0; i <= 10000; i++) 
  { 
   doWork(i); //all instances of doWork(i) run 
concurrently 
  } 
 

Code Snippet 
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X10 (From IBM) 

 Aims to improve 
productivity and 
portability of high-end 
computing systems 

 Open source, Object-
oriented 

 Higher level 
programming model 
than MPI 

 Supports PGAS 
 Limitations: 
 Still being developed 

 
 
 

finish  // wait till all inside functions have finished 
{ 
for(i =0; i< 10; i++)  
{ 
    val ii = i; 
    async  doWork (i); //all instances of doWork(i) 
run concurrently            
} 
} 

Code Snippet 
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Comparison of Languages 

Language/Add-
on Library Paradigm Garbage Collection 

Open-
Source VM/Native 

Cilk Library Shared N/A No Native 

MPI Library Distributed N/A Yes Native 

OpenMP Library Shared N/A Yes Native 

Pthread Library Shared N/A Yes Native 

Java Language Shared Yes Yes VM 

D Language Shared Yes Yes Native 

Go Language Both Yes Yes Native 

Chapel Language Both No Yes Native 

X10 Language Both Yes Yes 
Both 

possible 
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This is nice but… How to port my 
legacy application code to HPC? 

Challenges of Porting Legacy Code to HPC 
 
• Legacy code are generally written in C/Fortran 
• They are large (e.g. millions of lines of code) 
• They are complex (e.g. mathematical software) 
• Rewriting the code in a new language may introduce bugs! 
• Time and money overhead of porting may be huge! 
• Maintaining legacy code requires technical experts 

 
Thus, porting needs to be done carefully!  
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Porting Legacy Application to HPC 

 Method 1:  Direct code integration and interfacing 
with parallelization routine. 
 
 

 Method 2: Using program binary as a task in the 
parallelization routine.  
 
 

    We now compare their relative advantages… 
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A Comparison 

Direct code integration 
 Initialization & finishing 

are done only once 
 May not be possible on 

some platforms 
 Requires much more 

effort to implement, esp. 
for large codes 
 

 Summary: Efficient but 
requires large effort 
 
 

Using program binary 
 Initialization & finishing 

are done each time 
 Possible on most 

platforms 
 Easy to implement 

 
 

 Summary: Less efficient 
but easy to implement 
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TDPSS:  A Scalable Time Domain Power System 
Simulator for Dynamic Security Assessment 

38 

 A research grade simulator for steady state and 
dynamic contingency analysis 
 Provides models for different power system components 
 Provides different numerical solvers 
 Designed with object oriented programming 
 Validated against commercial software packages 
 Allows easy exploration! 

 Parallelization 
 For the solution of a single contingency (Data Parallelism) 
 Across multiple contingencies  (Task Parallelism) 
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Hierarchical Design of the Parallel TDPSS Simulator  
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Computational Steps  
in Time Domain Simulation 
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Results for Different HPC Characteristics 
41 

 Memory Architectures (shared, distributed, hybrid) 
 Programming Models (shared, MPI) 
 Type of Parallelization (Data/task) 
 Load Balancing 
 Synchronization/Communication 
 Programming Languages 
 

 



Data Parallelism 
42 

Parallel linear solvers and integration methods are key. 

IDAS 

 



Clear benefit from SuperLU_MT with 2-5 
threads; problem size too small for using 
more 

SuperLu 2.0 with 
pthreads  

Ansel Linux at 
LLNL w/ 1 node w/ 
2 x 6 core Intel 
Xeon 

Initial Results with threaded SuperLU_MT 

Collaboration with LLNL : C. Woodward , S. Smith and L. Min 
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Task Parallelism  
(Parallelism by Contingency) 

• Intra-contingency parallelism (Linear Solver)  
• Distributed computing (Cystorm Super Computer) 

• Distributed (MPI) 
• Hybrid (MPI+Ptheads) 
• PGAS (X10) 

• Shared memory multicore computing 
• Multithreading 

• Schedulers with direct code integration (X10) 
• Schedulers using binary (JAVA, X10, Chapel, D, Go) 

• Scheduler using Linux system calls and binary 
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Master-Slave (MPI) and Work-Stealing (MPI+Multithreaded) 
 Weak scaling w.r.t. 8 processors - Speedup vs. #processors 

Number of processors 

S
p

ee
d

u
p

 
Distributed Memory Architecture 

Speedup is defined as S(C, P) =T(C, 8)/T(C,P) 
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X10 Scheduler: 
Flow diagram 

C1 C2 C3 Cn 

Stability Analysis 
Failure Detection 

System Model 

      DAE Kernel 
1. Integrator 
2. Nonlinear Solver 
3. Linear Solver 

Feedback 

Scheduler 

Contingency List 

T1 T2 Tp 

schedule 

Processor 

Threads 

Software 

Hardware 

Shared Memory Architecture 
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X10: Master-Slave and Work-Stealing  
 (Speedup Over Serial Execution) 

Shared Memory Architecture 
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Scheduler Code 

Compiled Code  
in Bytecode 

Java compiler 

Main 
Thread 

(started by 
JVM) 

Java Virtual 
 Machine (JVM) 

T1 T2 TN 

T1 T2 TN 

T1 T2 TN 

Threads  
started 

Time 

Program End 

Initialization 

Finalization 

Each thread  
performs its task 

Porting Legacy Codes 

JAVA Scheduler:    
Flow diagram 
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JAVA: Master-Slave, Static and Work-Stealing  
 (Simulation Time in Seconds) 

49 



Summary 

 Parallel programming is a promising approach for 
accelerating computation-intensive application. 

 Effective scheduling techniques are important for 
achieving load-balancing. 

 Choice of programming language is important for 
efficient implementation on different architectures. 

 Accelerating legacy code requires special approaches. 
 HPC can significantly improve computational speed 

for security assessment. 
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High Performance Computing in Power and Energy Systems, Springer-Verlag 2012. 

 Khaitan, S. and McCalley, J. D., "Parallelization and Load Balancing Techniques for HPC” Encyclopedia 
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     Under Review 
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 Khaitan, S. and McCalley, J. D. “IMPACT: A Constraint-Aware Scheduling and Load-Balancing 

Technique for Parallel Contingency Analysis”, Submitted. 
 Khaitan, S. and McCalley, J. D., "MASTER: A JAVA Based Multithreaded Work-Stealing Technique for 

Parallel Contingency Analysis in Power Systems", Submitted. 
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Questions and comments are welcome 

Thank you very much! 

Siddhartha K. Khaitan   
skhaitan@iastate.edu 
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