PSERC Future Grid Initiatives Webinar Series

Cyber Physical Security for Smart Grid

Broad Analysis: Information Hierarchy for the Future Grid

Manimaran Govindarasu & Adam Hahn

Iowa State University gmani@iastate.edu adamhahn@iastate.edu

Pete Sauer

University of Illinois at Urbana-Champaign psauer@illinois.edu

PSERC Future Grid Initiative Webinar Series February 7, 2012

Talk Outline

- Cyber Physical Power Grid
- Cyber Threats & Impacts
- Research Challenges
 - 1. Cyber-Physical System Security
 - 2. Risk modeling and mitigation
 - 3. Security of WAM, WAP, WAC
 - 4. DMS & AMI Security
 - 5. Defense against coordinated attacks
 - 6. Trust management & attack attribution
 - 7. Data sets, models, validation studies

Conclusions

Smart Grid: A Cyber-Physical System

PSERC Future Grid Initiative Webinar Series February 7, 2012

3

Cyber Threats to Critical Infrastructures

[General Accounting Office, CIP Reports, 2004 to 2010]; [NSA "Perfect Citizen", 2010]: Recognizes that critical infrastructures are vulnerable to cyber attacks from numerous sources, including hostile governments, terrorist groups, disgruntled employees, and other malicious intruders.

4

Attacks-Cyber-Control-Physical

Security systems is difficult ...

- Open and interoperable protocols
- Security vs. performance tradeoff
- Security vs. usability tradeoff
- Security is expensive
- Attackers enjoy breaking into system
- Security had been not a design criteria
- Securing legacy systems even harder

Power Grid Cyber Security Roadblocks

- Legacy systems
- Geographically disperse
- Insecure remote connections
- Long system deployments
- Limited physical protections

- Adoption of standardized technologies with known vulnerabilities
- Connectivity of control systems to other networks
- No "fail-closed" security mechanisms
- Widespread availability of technical info

Documented Concerns

Policies/Reports			
DoE Roadmap to Achieve Energy Delivery System Cybersecurity, 2011	NERC-DoE HILF: High-Impact, Low- Frequency (HILF) Event Risk to the North American Bulk Power System		
NISTIR 7628, "Guidelines for Smart Grid Cyber Security"	NERC CIP (Critical Infrastructure Protection)		
NIST 800-82, "Guide to Industrial Control Systems (ICS) Security"	DHS Common Cyber Security Vulnerabilities in Industrial Control Systems		
GAO-11-117 : Electricity Grid Modernization: Progress Being Made on Cybersecurity Guidelines, but Key Challenges Remain to be Addressed	MIT Report: The Future of the Electric Grid, 2011		

Smart Grid Vision

Smart Grid vision

- Economic Benefits
- Reliability Benefits
- Environmental Benefits

Enabling Technologies

- Advanced sensing, communication, control
- Built-in Security
- Renewable Energy
- Emerging apps: WAMS, WAMPAC, DMS, SAS, AMI

Smart Grid Security = Info + Infra + Appln. Security

	Information Security	Infrastructure Security	Applications Security
N E E D S	 Information Protection Confidentiality Integrity Availability Authentication Non-repudiation 	 Infrastructure protection Routers DNS servers Links Internet protocols Service availability 	 Generation Control apps. Transmission Control apps. Distribution Control apps. System Monitoring functions Protection functions Real-Time Energy Markets
M E A N S	 Encryption/Decryption Digital signature Message Auth.Codes Public Key Infrastructure 	 Firewalls IDS/IPS Authentication Protocols Secure Protocols Secure Servers IPSEC, DNSSEC 	 Attack-Resilient Control Algos Model-based Algorithms Anomaly detection Intrusion Tolerance Risk modeling and mitigation Attack-Resilient Monitoring & Protection

Cyber Attacks: Deter, Prevent, Detect, Mitigate, Attribution; be Resilient

Smart Grid Cyber Security requirements

- Confidentiality (C), Integrity (I), Availability (A),
- Authentication (AT), Non-repudiation (N)

Smart Grid Application	Information & Infrastructure Security	Application Security
AMI	I, AT, C	I, N
DMS	I <i>,</i> A, AT	I <i>,</i> AT
EMS	I <i>,</i> A, AT	I <i>,</i> AT
WAMPAC	I, A, AT, C	Ι, Α
Power Markets	I, A, AT, C	I, N

Risk modeling & Mitigation

Risk = Threat x Vulnerability x Impacts

- Risk Assessment & Risk Mitigation (GAO CIP Report, 2010)
- Security Investment Analysis

Cyber Security of Wide-Area Monitoring, Protection and Control

Attack-Resilient Monitoring, Protection Control Algorithms

- Man-in-the-middle attacks
 Data integrity attacks
 Denial of service attacks
 Replay attacks
 Timing attacks ...
- Frequency control
- Voltage control
- Transient stability

S. Siddharth, A. Hahn, and M. Govindarasu, "Cyber Physical Systems Security for Smart Grid" Special issue on Cyber-Physical Systems, Proceedings of the IEEE, Jan. 2012.

Control Systems Attack Model

Generic Control System Model

Types of Attacks

- Data integrity
- Replay
- Denial of service
- De-synchronization and timing-based

Figure adopted from - Yu-Hu. Huang, Alvaro A. Cardenas, et al, "Understanding the Physical and Economic Consequences of Attacks on Control Systems"

Power System Control Loops

Automatic Generation Control

Frequency Control

Siddharth Sridhar and G. Manimaran – "Data Integrity Attacks and Impacts on SCADA Control System" – PES GM 2011

Attack Resilient Control (ARC)

ARC – Intelligence Sources

- Forecasts Load and wind forecasts
- Situational Awareness System topology, geographic location, market operation
- Attack Templates Attack vectors, signatures, potential impacts
- System Data Machine data, control systems
- System Resources Generation reserves, VAR reserves, available transmission capacity

Wide-Area Monitoring & Protection

Secure WAMS & Protection (& NASPInet)

CPS Testbed – A Layered View

22

PowerCyber Testbed @ Iowa State

- 1. Cyber Physical Systems Security
- Information Hierarchy
- Communication, Control Architectures
- Cyber-Control- Physical Mapping:
 Threats → Attacks → Cyber → Control → Impacts

- 2. Risk Modeling and Mitigation
- Vulnerability Assessment
- Impact Analysis
- Novel metrics
 - Load loss, Stability, Reliability, Economic factors
- Hierarchical risk modeling framework
- Synergistic Cyber-Physical mitigation

- 3. Attack Resilient WAMPAC Algorithms
- Attack Resilient Wide-Area Measurement

 Security of PMU networks and data (NASPInet)
- Attack Resilient Wide-Area Control
 - Secure Automatic Generation Control (AGC)
- Attack Resilient Wide-Area Protection

- Adaptive, Intelligent Remedial Action Scheme

Secure Energy Management System (EMS)

- 4. Defense against Coordinated Attacks
- Risk modeling of coordinated attacks
- Beyond N-1 contingency
 - Scope, planning, system design
- Cyber-physical mitigation

5. DMS & AMI Security

- Remote attestation of AMI components
- Model-based anomaly detection methods
- Secure Distribution Management Systems (DMS)
- Security vs. Privacy tradeoffs

6. Trust Management & Attack Attribution

- Dynamic trust
 - Models, protocols, and validation
- Insider threats
 - Models, metrics, mitigation
- Attack attribution
 - Scalable architectures and algorithms

- 7. Datasets and Validation
- Data sets and models for:
 - SCADA networks, AMI, WAMPAC, CIM
- Realistic attack models and traces
- Testbed Development
- Realistic Attack-Defense studies

Conclusions

- Cyber security of smart grid is a national security issue
- Smart Grid Security = Info Sec + Infra Sec + Application Security
- Defense against Smart Coordinated Cyber Attacks
- Risk Modeling & Mitigation Algorithms
- Attack-Resilient Monitoring, Protection, and Control algorithms
- Trust management, Attack Attribution, AMI & DMS Security
- Data sets, models, and Validation studies
- Cyber-Physical Systems Security is an important area of R&D
- Standards development and Industry adoption are critical

Thank you !!!

- Reviewers:
 - Scott Backhaus, Las Alamos National Laboratory
 - Jianhui Wang, Argonne National Laboratory

Acknowledgements:

- Department of Energy
- National Science Foundation
- Power Engineering Research Center (PSERC)

•Grad Students: Aditya Ashok, Siddharth Sridhar @ Iowa State University