Machine Learning in Distribution Grids

Yang Weng Arizona State University (yang.weng@asu.edu)

PSERC Webinar March 5, 2019

Presentation Outline

- Challenges in Distribution Grids
- Integration between Machine Learning and Power Flow Models
- Tests in a California Grid and IEEE Benchmarks
- Conclusion and Future Work

Distribution Grid Management

Capability of Modeling Other Smart Devices in Distribution Grids

- Smart PV inverters [1]
- Smart EV chargers [2]

• …

Smart micro-grid centralized controllers [3]

[1] Su, Xiangjing, Mohammad AS Masoum, and Peter J. Wolfs. "Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced four-wire LV distribution networks." IEEE Transactions on Sustainable Energy 5.3 (2014): 967-977. [2] Dias, F. G., et al. "Potential for Plug-In Electric Vehicles to provide grid support services." Transportation Electrification Conference and Expo (ITEC), 2017. [3] Meng, Fanjun, et al. "Distributed generation and storage optimal control with state estimation." IEEE Transactions on Smart Grid 4.4 (2013): 2266-2273.

Phasor Measurements in Distribution Grids

- Utility's pilot program provides phasor measurements in some feeders.
- Emerging techniques can convert inexpensive smart meters to phasor measurement units in the near future [1, 2].

[4] Rhoads, Geoffrey B., and Conrad Eustis. "Synchronized metrology in power generation and distribution networks." U.S. Patent No. 9,330,563. 3 May 2016. [5] McKinley, Tyler J., and Geoffrey B. Rhoads. "A/B/C phase determination and synchrophasor measurement using common electric smart meters and wireless communications." U.S. Patent No. 9,230,429. 5 Jan. 2016.

Distribution Grid Management

- **Given**
	- Network topology
	- Network admittances
	- Load and DG injections
	- Active control laws
- Power Flow Equation Holds
	- Optimal power flow
	- Optimal voltage control
	- Situational awareness

$$
p_i = \sum_{k=1}^{n} |v_i||v_k|(g_{ik}\cos\theta_{ik} + b_{ik}\sin\theta_{ik})
$$

$$
q_i = \sum_{k=1}^{n} |v_i||v_k|(g_{ik}\sin\theta_{ik} - b_{ik}\cos\theta_{ik})
$$

• Models partially unknown in some utility (CA, AZ, PA) distribution grids...

Presentation Outline

- Challenges in Distribution Grids
- Integration between Machine Learning and Power Flow Models
- Tests in a California Grid and IEEE Benchmarks
- Conclusion and Future Work

Existing Data-Driven Solutions

• Historical node measurements

 $\bm{p}_i := \{p_1, \cdots, p_T\}$, $\bm{q}_i := \{q_1, \cdots, q_T\}$, $\bm{v}_i := \{v_1, \cdots, v_T\}$, $\bm{\Theta}_i := \{\theta_1, \cdots, \theta_T\}$

- Topology reconstruction *(Deka et al, 2015), (Bolognani et al, 2013), (Liao et al, 2016), (Sevlian et al, 2016)*
- Line parameter estimation *(Yu et al, 2017), (Yuan et al, 2016)*
- Incapable when
	- Active controllers
	- Partial measurements

Machine Learning for System Modeling

• Historical node measurements

 $\bm{p}_i := \{p_1, \cdots, p_T\}$, $\bm{q}_i := \{q_1, \cdots, q_T\}$, $\bm{v}_i := \{v_1, \cdots, v_T\}$, $\bm{\Theta}_i := \{\theta_1, \cdots, \theta_T\}$

• Topology and Line Parameter Estimation

$$
p_{i} = \sum_{k=1}^{m} |v_{i}| |v_{k}| (g_{ik} \cos \theta_{ik} + b_{ik} \sin \theta_{ik})
$$

Physical model
+
$$
\sum_{k=m}^{n} |v_{i}| |v_{k}| (g_{ik} \cos \theta_{ik} + b_{ik} \sin \theta_{ik}) + h(\mathbf{v}, \mathbf{\theta})
$$

Unknown unmeasured buses

Machine Learning based Representation Estimation

$$
p_i = f_{p_i}(\boldsymbol{v}, \boldsymbol{\theta})
$$

$$
q_i = f_{q_i}(\boldsymbol{v}, \boldsymbol{\theta})
$$

Machine Learning Model?

Abstract Function Space \rightarrow Generalization

Generalization of Power Flow Equations

• Inner-product representation

$$
p_i = \langle [g; b], \phi_{p_i}([v; \theta]) \rangle
$$

$$
q_i = \langle [g; b], \phi_{q_i}([v; \theta]) \rangle
$$

• Abstraction

$$
y = \langle \beta, \phi_y(x) \rangle
$$

Machine Learning Model Choice: SVR

SVR Model for Mapping Rule Estimation

Objective: minimizing the fitting error and coefficient regularization

dot-product weights: fitting - regularization coefficient

minimize $\frac{1}{2} ||\beta||^2 + C \sum_i^T (\xi_t + \xi_t^*)$
 β, ξ, ξ^*, b $\tau=1$ fitting error penalty subject to $y_t - \langle \beta, \phi_y(x_t) \rangle - b \le \epsilon + \xi_t$, Function width: no-penalty zone \rightarrow kernel space $<\beta, \phi_y(x_t) > +b-y_t \leq \epsilon + \xi_t^{\star},$ $\xi_t, \xi_t^{\star} \geq 0$ constant coefficient term ζ T! $-\varepsilon$ $+{\epsilon}$ x 12

Kernel-Based Mapping Rule Representation

• SVR-based Mapping Rule Representation

$$
y = f_y^{\star}(x) = \sum_{t=1}^T \alpha_t^{\star} K(x, x_t)
$$

• Reproducing Hilbert Kernel Space (RHKS) $K(x_1,x_2) := \langle \phi(x_1), \phi(x_2) \rangle = h(\langle x_1, x_2 \rangle)$

Comparison between Representations

• Physical domain representation: line parameters and topology

$$
y = \langle \boldsymbol{\beta}, \boldsymbol{\phi}_y(x) \rangle
$$

SVR representation: (time domain) support vectors $\bm{\mathit{T}}$

$$
y = f_{y}^{\star}(x) = \sum_{t=1} \alpha_{t}^{\star} K(x, x_{t})
$$

Why This Works?

• Feature map 2nd polynomial kernel $\phi(x) = [x_1^2, \cdots, x_m^2, \sqrt{2}x_1x_2, \cdots, \sqrt{2}x_1x_m, \sqrt{2}x_2x_3, \cdots, \sqrt{2}x_{m-1}x_m, \sqrt{2}cx_1, \cdots, cx_m, c]$

• Notice
$$
p_i = \sum_{k=1}^n |v_i||v_k|(g_{ik}\cos\theta_{ik} + b_{ik}\sin\theta_{ik}) = \langle \beta^\star, \phi(x) \rangle
$$

where

$$
\beta_{j}^{\star} = \begin{cases}\ng_{ii}, & \text{if } \phi(x)_{j} = (v_{i} \cos \theta_{i})^{2} \text{ or } \phi(x)_{j} = (v_{i} \sin \theta_{i})^{2}, \\
\frac{1}{\sqrt{2}}g_{ik}, & \text{if } \phi(x)_{j} = \sqrt{2}(v_{i} \cos \theta_{i})(v_{k} \cos \theta_{k}), i \neq k, \\
\frac{1}{\sqrt{2}}g_{ik}, & \text{if } \phi(x)_{j} = \sqrt{2}(v_{i} \sin \theta_{i})(v_{k} \sin \theta_{k}), i \neq k, \\
\frac{1}{\sqrt{2}}b_{ik}, & \text{if } \phi(x)_{j} = \sqrt{2}(v_{i} \sin \theta_{i})(v_{k} \cos \theta_{k}), \\
-\frac{1}{\sqrt{2}}b_{ik}, & \text{if } \phi(x)_{j} = \sqrt{2}(v_{i} \cos \theta_{i})(v_{k} \sin \theta_{k}), \\
0, & \text{otherwise.}\n\end{cases}
$$

Presentation Outline

- Challenges in Distribution Grids
- Integration between Machine Learning and Power Flow Models
- Tests in a California Grid and IEEE Benchmarks
- Conclusion and Future Work

Test Cases

- A utility's power and voltage measurement data
- IEEE's standard test feeder model from 8-bus to 123-bus to generalize our results
- Only use topology and line parameter information when generating training data

Test on Model Generality: Mesh Structure?

Grid with partial measurement on root and leave nodes

Test on Model Generality: Unknown Controller

Droop controller of reactive power injections for voltage regulation

SVR: robust up to 20 droop coefficient while physical model fails to reveal the truth

Test on Robustness Against Outliers

Test on Model Extrapolation

No DER, training and testing data in same range

Testing data with high demands.

Testing data with deep DER penetration.

Test on Model Extrapolation

TABLE I: Benchmark of forward mapping

Presentation Outline

- Challenge in Distribution Grids
- Integration between Machine Learning and Power Flow Models
- Tests in a California Grid and IEEE Benchmarks
- Conclusion and Future Work

3-Phase Power Flow in Distribution Grids

- Balanced system
	- 1-phase model \rightarrow A good approximate for 3-phase system [1, 2, 3]
- Unbalanced system
	- Current Work \rightarrow OpenDSS and Opal-RT
	- Real time 3-phase system \rightarrow Both simulation and hardware-in-theloop
	- Develop machine learning-based models \rightarrow 3-phase system

^[6] Abur, Ali, and Antonio Gomez Exposito. Power system state estimation: theory and implementation. CRC press, 2004.

^[7] Crow, Mariesa L. *Computational methods for electric power systems*. Crc Press, 2015.

²⁴ [8] Glover, J. Duncan, Mulukutla S. Sarma, and Thomas Overbye. Power System Analysis & Design, SI Version. Cengage Learning, 2012.

Conclusions and Future Work

Future work:

- ML power flow-based OPF
- Use ML power flow for system control
- Metrics for confidence

Questions?

Yang Weng (yang.weng@asu.edu)