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Presentation Outline
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Distribution Grid Management
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Capability of Modeling Other Smart Devices in 
Distribution Grids
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• Smart PV inverters [1]
• Smart EV chargers [2]
• Smart micro-grid centralized 

controllers [3]
• …

[1] Su, Xiangjing, Mohammad AS Masoum, and Peter J. Wolfs. "Optimal PV inverter reactive power control and real power curtailment to improve performance of 
unbalanced four-wire LV distribution networks." IEEE Transactions on Sustainable Energy 5.3 (2014): 967-977. 
[2] Dias, F. G., et al. "Potential for Plug-In Electric Vehicles to provide grid support services." Transportation Electrification Conference and Expo (ITEC), 2017. 
[3] Meng, Fanjun, et al. "Distributed generation and storage optimal control with state estimation." IEEE Transactions on Smart Grid 4.4 (2013): 2266-2273.



Phasor Measurements in Distribution Grids
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• Utility’s pilot program provides 
phasor measurements in some 
feeders.

• Emerging techniques can convert 
inexpensive smart meters to 
phasor measurement units in the 
near future [1, 2].

• We show the capability of machine 
learning-based representation as a 
technical validation.

[4] Rhoads, Geoffrey B., and Conrad Eustis. "Synchronized metrology in power generation and distribution networks." U.S. Patent No. 
9,330,563. 3 May 2016. [5] McKinley, Tyler J., and Geoffrey B. Rhoads. "A/B/C phase determination and synchrophasor measurement using 
common electric smart meters and wireless communications." U.S. Patent No. 9,230,429. 5 Jan. 2016.



Distribution Grid Management
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• Given
• Network topology
• Network admittances
• Load and DG injections
• Active control laws

• Power Flow Equation Holds
• Optimal power flow
• Optimal voltage control
• Situational awareness

• Models partially unknown in some utility (CA, AZ, PA) distribution grids...
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Existing Data-Driven Solutions
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• Historical node measurements

• Topology reconstruction (Deka et al, 2015), (Bolognani et al, 2013), 
(Liao et al, 2016), (Sevlian et al, 2016)

• Line parameter estimation (Yu et al, 2017), (Yuan et al, 2016)

• Incapable when
• Active controllers
• Partial measurements



Machine Learning for System Modeling
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Physical model

Unknown unmeasured buses Unknown control

Machine Learning Model?

• Machine Learning based 
Representation Estimation

• Historical node measurements

• Topology and Line Parameter Estimation

Abstract Function Space 
 Generalization



Generalization of Power Flow Equations
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• Inner-product representation

• Abstraction



Machine Learning Model Choice: SVR
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Linear 
regression

Support 
vector 

regression
Random 

forest ...
Artificial 
neural 

network

Model Generalization

Interpretation

• Balance

• Equivalence to 
physical law 

model in some 
condition



SVR Model for Mapping Rule Estimation
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width: no-penalty zone

fitting error penalty 

constant coefficient term

dot-product
coefficient

Function 
 kernel space

weights: fitting - regularization

Objective: minimizing the fitting error and coefficient regularization



Kernel-Based Mapping Rule Representation
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• SVR-based Mapping Rule Representation

• Reproducing Hilbert Kernel Space (RHKS)



Comparison between Representations
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• Physical domain representation: 
line parameters and topology 

• SVR representation: (time 
domain) support vectors



Why This Works?
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• Feature map 2nd polynomial kernel

• Notice



Presentation Outline

• Challenges in Distribution Grids

• Integration between Machine Learning and Power 
Flow Models

• Tests in a California Grid and IEEE Benchmarks

• Conclusion and Future Work

16



Test Cases
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• A utility’s power and voltage measurement data
• IEEE’s standard test feeder model from 8-bus to 123-bus 

to generalize our results
• Only use topology and line parameter information when 

generating training data



Test on Model Generality: Mesh Structure?
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SVR: constantly better than 
learning (nominal) physical 

parameters

Grid with partial measurement 
on root and leave nodes



Test on Model Generality: Unknown Controller
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Droop controller of reactive power 
injections for voltage regulation

SVR: robust up to 20 droop 
coefficient while physical model 

fails to reveal the truth



Test on Robustness Against Outliers
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Cost function of fitting error:
• Asymptotic linear
• Insensitive to outliers



Test on Model Extrapolation
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Test on Model Extrapolation
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3-Phase Power Flow in Distribution Grids
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• Balanced system
• 1-phase model  A good approximate for 3-phase system [1, 2, 3]

• Unbalanced system
• Current Work  OpenDSS and Opal-RT
• Real time 3-phase system  Both simulation and hardware-in-the-

loop
• Develop machine learning-based models  3-phase system

[6] Abur, Ali, and Antonio Gomez Exposito. Power system state estimation: theory and implementation. CRC press, 2004.
[7] Crow, Mariesa L. Computational methods for electric power systems. Crc Press, 2015.
[8] Glover, J. Duncan, Mulukutla S. Sarma, and Thomas Overbye. Power System Analysis & Design, SI Version. Cengage Learning, 2012.



Conclusions and Future Work
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Physical Law Model
Incapable of partial measurements
Unable to model active controllers

Machine Learning Model
• SVR: A balance between generality 

and interpretability
• Partial measurements
• Active controllers
• Outliers

Future work:
• ML power flow-based OPF
• Use ML power flow for system control
• Metrics for confidence



Questions?

Yang Weng
(yang.weng@asu.edu)
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