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Power Grid: Reliable but Not Resilient
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WRAP for Resiliency

Withstand any sudden inclement weather or human attack on the
infrastructure.

Respond quickly, to restore balance in the community as quickly as
possible, after an inevitable attack.

Adapt to abrupt and new operating conditions, while maintaining smooth
functionality, both locally and globally.

Predict or Prevent future attacks based on patterns of past experiences, or
reliable forecasts.




Electric Grid Resiliency

through (and in spite of) extreme
contingencies and low resource
availability

Operational
Security

and
Restoration

Reliability
Cyber ’ Physical
System IT Security /
Hardening

Existing Operational Integrated Cyber- Future Operation
Practice Physical Analysis




Taxonomy of Resiliency
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Can we measure resiliency?

Quantify design

Attack
for better systems

. tem Plan
Real-time Syste ane

Vulnerability Attack Plane
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Of Resilience L/
‘ How much

Tolerance?

4 Tolerance
> < >
Proximity to Time taken
collapse To collapse
e\, Dysfunction
Red — Not Resilient -
Purple — Resilient

Green — Super Resilient



Multi-criteria Decision for Physical
Resiliency
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Overview of Resiliency Quantification

Process

| Edge Count

| Overlapping Edges

Weights assigned to factors using
pairwise comparison, or can be used
defined according to requirement

| Switching Operations

|Repetiti0n of Sources Ii

¢ BN

Interaction Index A is determined —
models interdependency between factors
considered

| Centrality

L

| Probability of
Availability

| Penalty Factor

Culh) = [ fdu =37 (F@i) = F@imn) n(Aw)
" i=1

Choquet Integral to combine the
factors into single resiliency value

Decision
Making
Tool



How PMU data analytics enable resiliency?




Resiliency requires Situational Awareness is Data analytics helps in

knowing the threat necessary to take decision enhanced awareness

* Predicts the future based on past
patterns.

» Explores and examines data from
multiple disconnected sources.

» Develop new analytical methods
and machine learning models.

 Leverage data for relevant
applications.

 Deliver actionable insights from the
data.

Data Processing,
Database, Interfacing,
Management

Statistical
(Regression,
clustering) P

- System and
relational analysis
(Graph Theory)

Data Science
and Analytics )

achine Learning
(Deep learning,

« Store and process the data for reinforcement)
Insights.
« Design and create data reports Ve lzation
\ science)

using various reporting tools.
» Query database and package data
for insights.



Data Collection by PMUs: Example of Operational Data

* PMU sampling rates: 30 per second
* Assume 100 values per second

If we assume all 100 points in a sub are PM

* Average data rate per sub is 10K/sec

* Average data rate for the total of 100 subs in a
BA is 1TM/sec

* Average data rate for the RC is then 10M/sec

Data Analytics Needed for Making Sense of this
Steaming Operational Data for Cyber or Physical
Events !l Credit: Prof Anjan Bose, WSU



Use Case I: PMU based Anomaly/ Event

Detection




Use Case |: Anomaly Detection and Classification:

Processing lots of data in real time

Data
e Physical

- PMU measurements
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measurements 2777

* Cyber
- Network data
* Pcaps, netflows,
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Options?

Linear regression :
" Qutlier i—..__’. Upper threshold
find straight line y = a + Sx to provide a | : /
"best” fit for the data points w.r.t least-squares /
2: o o Lower&reshold

Chebyshev method T

Determine a lower bound of the percentage of data that exists
within k standard deviations from t

1
P(X - uisko)z(1-3)

U: mean, o: standard deviation, k: number of standard deviations
from the mean.
Amidan, Brett G., Thomas A. Ferryman, and Scott K. Cooley.

"Data outlier detection using the Chebyshev
theorem."” Aerospace Conference, 2005 IEEE. IEEE, 2005.



DBSCAN

DBSCAN uses two thresholds radius
e and min.

A data point is a center node if it has
more than min e-neighbors (points
within distance ¢);

Two centers are reachable if they are
in e-neighbor of each other; a cluster
IS a sequence of reachable centers
and their e-neighbors

New clusters is formed after the
event ends. Points far away from any
cluster are outliers.
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LSTM Auto-encoder Model

The model consists of two RNNs — the encoder
LSTM and the decoder LSTM as shown in Figure

The input to the model is a sequence of vectors
(PMU data)

The encoder LSTM reads in this sequence

Once input vector is read, the decoder LSTM takes
over and outputs a prediction for the target
sequence

The encoder can be seen as ‘creating a list’ of new
inputs and previously constructed list (learned
weights).

The decoder essentially unrolls this list, with the
hidden to output weights extracting the element at
the top of the list and the hidden to hidden weights
extracting the rest of the list.

Thus the LSTM weights are learned using the auto
encoder method.

Fig 3: LSTM Auto encoder Model

o (Weixe + Whihy—1 + Weici—1 + by)

o (Wapxe + Wishyy + Wesci_1 +by),
fco1 + it tanh (Waex; + Wiehe—1 + be)
o (Weoxe + Wiohy 1 + Weoer + by,)

o tanh(cy).
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Outlier at x=2
i : Detected by
* Chebyshev
Linear Regression
And DBSCAN

Two missing data point at
 (x=7,y=0) and (x=11, y=0)
Detected by Chebyshev

Linear Regression \

And DBSCAN

Qutlier at x=8
Detected by
Linear Regression

|

Outlier at x=13,15

/ Detected by
/ DBSCAN

. == Outlier at x=14

Detected by
Chebyshev

No Single Winner! ’

Lack of training data

——




Anomaly Detection with Ensemble

Data Window

from PMU/PDC

- 3
E Regression \
 Chebyshev

(online) Learning

« DBSCAN
e LSTM

D1 D2| D3 D4

fi §; fi f,

A4 A A 4

Outlier Scores

2.Normalization | F
of Base

Normalized

Data X

3. MLE-

v

Detector Scores

1. Base

\ Detectors /

Ensemble

A

4. Inference Algorithm

Inference

Model Y, e (o, B)

Y

5. Unflagging Anomalies
detected in Transient Window

Detection of Transient
Window Using Prony
Analysis

6. Bad Data

Detected
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Maximum Likelihood Estimator (MLE)

_ e No Single Winner! -> ensemble-based
Normalized * Needs tuning effort -> learning best integration
Scores - . _
e Lack of training data-> Unsupervised detection
sensitivity: fraction of *““correctly” identified outliers
F ] specificity: fraction of ““correctly’” identified non-outliers
Normalized |
Yoy
Data || X| [ Compute 1] Learn Weights i = — il
Set | Sensitivity ¥ and aand B (L —3) (1 —m)
(=)
o, Final
F lized Using EM Iez;rnnid
Normalize algorithm fit .
" v weights
yMEE =N (fila)logai + log i) HLE o, P
i=1
|

MLE-Ensemble
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Performance Metrics for Ensemble Based

Technique

Given a PMU detector D and PMU data X, denote the actual anomaly data set as By ,
and the anomaly reported by D as B, the performance of D is evaluated using three
metrics as follows.

Precision: Precision measures the fraction of true anomaly data in the reported ones

from D, defined as
|Bp N Br|

| Bp

Precision =

Recall: Recall measures the ability of D in finding all outliers, defined as

|Bp N Br|

Recall =
| Br|

False Positive: False positive (FP) evaluates the possibility of false anomaly data
detection; the smaller, the better
~ |Bpn By

FP=1
|Bp|




Simulation results for SyncAD
RTDS simulated PMU data (1.5 hours)

_ Recall Precision False positive

Linear Regression 0.9021 0.8565 0.1435
DBSCAN 0.8821 0.8821 0.1179
Chebyshev 0.9154 0.8754 0.1246
LSTM 0.9298 0.8554 0.1446
MLE ensemble 0.9351 0.8913 0.1087

Tests on the RTDS simulated PMU data (1.5 hours, 5% bad data points, 5%-10% range)

_ Recall Precision False positive

Linear Regression 0.7854 0.7655 0.2345
DBSCAN 0.7216 0.7015 0.2985
Chebyshev 0.8125 0.7542 0.2458
LSTM 0.8298 0.7754 0.2246
MLE ensemble 0.8912 0.9021 0.0979

Tests on the RTDS simulated PMU data (1.5 hours, 10% bad data points, 10%-20% range)

23



Results with SyncAD using Real PMU Data
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Use Case Il: PMU based Failure Diagnosis




Use case ll: Cyber-physical Data Analytics in
Protection Failure

& Protection Mal- pe——

Status Event Pronet . List Of

O pe rati O n i S #1 Change Analysis Formation Hypothesis
concern according — ———
to NERC s . 8

PHYSICAL SYSTEM

@ Protection and
associated control [ [ Bl | c(ﬁ’t:f’;(
IS becoming more
digital

Cyber Data Analytics
Using Decision Tree
Based Network
Packet Parser

CYBER SYSTEM

v

Most
Probable
Event

v

Validate using
LOG files

v

Final Decision
Control




Abnormal Operation

A fault occurs on line Relay/Breaker [
2-3 Relays 7 and 8 are PMU O

expected to open their Bus1 9 Bus 5 Bus 4
corresponding : > J12 116 l (25 J20 112 ll
O L&!,
54

breakers but relay 7
doesn’t respond

To compensate relay’s
7 malfunction, relays
1, 3, 10 and 12 should
open their

correspon din g Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems
breakers but relay 1

malfunctions.




Hypothesis Generation

Hypothesis # Lsfcfagl'ﬁtn Initial Incident Consequential Incident

Actual
Scenario

Breakers 3,8,12 tripped
Relay 1 malfunctioned
Relay 6 Tripped

Breakers 8,10,12 tripped
Relay 1 malfunctioned

Breaker 10 tripped

e |ne 2-4 Relay 9 malfunctioned

Breaker 3 tripped

Hypothesis 2 Line 2-1-2 Relay 4 malfunctioned

Relay 6 Tripped
: : Breaker 6 tripped Relay 2, 3, 4 malfunctioned
AYRCHICEE € Line 1-5 Relay 5 malfunctioned Breakers 8,10,12 tripped

Breakers 3, 8, 10 tripped
Relay 1 malfunctioned
Relay 6 Tripped

Breaker 12 tripped

R Lne 25 Relay 11 malfunctioned

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems



Data Analytics For Event Classification

SCADA Streaming PMU Streaming Cyber
Breaker Status and Data Data

Topology of the System
i PMU Data Cyber Data
\l' —_— y
Breaker Status 4 Signature Based
v ¥
Fault Detection Intrusion Detection
(Physical Data) (Cyber Data)

v

IF-Else Conditions based

/ Final Decision \

Cyber Attack v Cyber-Physical
Physical Fault

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems



Simulating Cyber Attack on a
Relay

Station Level Field Level

.I Merging unit

Firewall

Process bus

Attacker sends an e-mail with malware

E-mail recipient opens the e-mail and the
malware gets installed quietly

Using the information that malware gets, hacker
is able to take control of the e-mail recipient’s
PC and get access of two-level password

Analysis IEC 61850 protocol(GOOSE, SMV packet)
information and relay setting file

Station bus

SEL 421
Manipulate MMS packet and relay configuration session Bay Level protection relay

information

Takes control of circuit breaker or change the setting of Substation
relay




Detect Intrusion Using Cyber Data From Relay.

Relay IP address: 192.168.0.16 || Operator IP address: 192.168.0.23 || Unauthorized IP address:192.168.0.14

No. Time source Destination Protocol Length Info
2296 126.405616 192.168.8.14 192.168.0.16 MMS 229 confirmed-RequestPDU
2297 126.489243 192.168.08.16 192.168.0.14 MMS 84 confirmed-ResponsePDU
- 2298 132.293425 192.168.8.14 192.168.0.16 MMS 229 confirmed-RequestPDU
| .296947 . 8. .B. confirmed-ResponsePDU
23668 137 .581544 192.168.8.14 192.168.0.16 MMS 229 confirmed-RequestPDU
2301 137.645231 192.168.0.16 192.168.08.14 MMS 84 confirmed-ResponsePDU
2302 141 .453519 192.168.8.14 192.168.0.16 MMS 229 confirmed-RequestPDU
2303 141 .456890 192.168.0.16 192.168.0.14 MMS 84 confirmed-ResponsePDU
2304 145.213451 192.168.8.14 192.168.0.16 MMS 229 confirmed-RequestPDU
2385 145.216523 192.168.8.16 192.168.6.14 MMS 84 confirmed-ResponsePDU
2306 151.24580801 192.168.8.14 192.168.0.16 MMS 229 confirmed-RequestPDU
Capture Network
Packets
Attack Scenario For Relay
Communication between Relay and Un-
H Detected
authorized IP Address-(Attacker)
YES

No Intrusion
Detected

I.P Address

Operator's

Detecting an Intrusion :

Mo Intrusion Intrusion Intrusion
Detected Detected Detected



Detect Intrusion Using Physical Data From PMU

Algorithm Description : _’ Encoder "E" Decoder _’

Original
input

Reconstructed
input

Compressed
representation

Basic Idea : Reconstruction of input feature vector with minimum loss (Mean Square Error)

Train the algorithm on input data consisting of no anomalies.
Output Result : Reconstructed input feature vector with low MSE.

Test the algorithm on input data consisting of anomalies.
Output Result : Reconstructed input feature vector with high MSE.

We want our algorithm to have high MSE on input data consisting of anomalies and low MSE on
Input data consisting of no anomalies.



Detect Intrusion Using Physical Data From PMU

ENCODER
DECODER
O @
@ TO. @ @
O O ™ ~ . P @
@ O ()l | ®code | | @ ® @
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O O o & rle O ®
@) O oL ® o @
© O o e © @
O o | o @ @
O O - S ®
o O @®o. ©
@®- @
[ L X J 1
: /
N\ |
INP\UT LAYER HIDDEI{I LAYER OUTPUT LAYER

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems

Architecture Of
Stacked Autoencoder

Loss Function : Mean Squared Error
Optimizer : ADAM

- Input Feature Vector

X

: Reconstructed Output
Feature \Vector

T



Detect Intrusion Using Physical Data From PMU

Dataset Description :

Dataset # PMU Readings
(Total : 37500)

Training Dataset (No Fault) 22250
Testing Dataset (No Fault) 11250
Validation Dataset (Fault) 4000

Types Of Validation Dataset:

Validation PMU Readings PMU Readings
Dataset (# Normal Instances) (# Anomalous Instances)
Type 1 3979 21
Type 2

(Synthetic Minority 3979 3979

Oversampling -SMOTE)

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems
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Detect Intrusion Using Physical Data From PMU

Evaluation Metrics

The intersection between actual values and predicted values yield four possible situations:
e True Positive (TP): Positive instances correctly classified.

. False Positive (FP): Negative instances classified as positive.

e True Negative (TN): Negative instances correctly classified as negative.

. False Negative (FN): Positive instances classified as negative.

Classification Measures:

TP+TN
Accuracy is calculated as the number of correctly classified instances over total number of instances evaluated. Accuracy = Total instances
Precision is the percentage of correctly predicted instances over the total instances predicted for positive class. reciSion = v T FP
Recall is the percentage of correctly classified instances over the total actual instances for the positive class. Recall — TP
TP+FN
F-measure — 2 » Precision x Recall
F-Measure is a measure of test accuracy. Prerision + Recall

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems



Detect Intrusion Using Physical Data From PMU

Autoencoder Evaluation On Type 1 (Validation Dataset)

Validation Dataset Reconstruction error for different classes (Maximum) Algorithm Performance on Validation Dataset
10 - 0025 .  nommal . 10 -
— + Anomaly
= —— Threshold .
S 08- 5 0020 - e o 28
2 o 8
< - ]
- 06 - 5 a 06-
- & 0015- I
L 2 £
= 04- ‘:‘En g 04-
E o oolo- & —— Accuracy
E 02 - g pz - — Precison
= —— Recall
0.005 - - = F_Measure
0o - !
1000 1500 2000 2500 3000 3500 4000 1000 2000 %636?35”5 P BS'B{'J?ET}
Number of Observations Data point mdex Threshold Scale
Threshold Accuracy Precision Recall F-Measure
(Test Data)
0.003617 5.50%
(Minimum)
0.003621 50.25% 0.99 0.50 0.66
(Mean)
0.003625 99.48% 1.0 0.99 1.00
(Maximum)

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems



Decision Based On Data Analytics And Validation Using
Additional Non-Streaming Data

Relay/Breaker [ ]
PMU O

Y
Bus 1 Bus 5 Bus 4

|—1's—||—1'o—|l—r|l Bus 12

Bus 14 ir
-

L
Bus 9

H©
Bua 1 5 )
Bus Bus 4 Bus 8
k .|" 1ETIT14
9 mul3

Bus 7 2 a1l s | 0/" =]
Bus 3

e PMU 2 and 3 show h|ghest MSE among

Initial incident Consequential incident

Scenario | Location of Fault

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems

Line 2-4 Breaker 10 tripped Breakers 3, 8, 12 tripped
Sen 1 Relay 9 malfunctioned Relay 1 malfunctioned
Relay 6 tripped al I PM U S
Line 2-1-2 Breaker 3 tripped Breakers 8, 10, 12 tripped
Sen 2 Relay 4 malfunctioned Relay 1 malfunctioned
Relay 6 tripped . .
Line 1-5 Breaker 6 tripped Relays 2,3.4 malfunctioned ° It can be determlned that mOSt prObably
Sen 3 Relay 5 malfunctioned | Breakers 8, 10, 12 tripped . .
Line 2-5 Breaker 12 tripped | Breakers 3, 8, 10 tripped the fault could have occurred in the line from
Scn 4 Relay 11 malfunctioned Relay 3 malfunctioned
Relay 6 tripped bu S 2 and 3



Use Case lll: Data-driven Resiliency Analysis




Cyber-Physical Modeling and Visualization for
Microgrid Resiliency (S-82)

» Create accurate
models of physical
and cyber microgrid
and 1interface them
to obtain holistic
cyber-physical
system (CPS) model

» Demonstrate cyber-
physical resiliency
metrics and

> mardiowancesp visu®fization Framework

fHCcragiartted situddftdnal awareness

adverse events
39



CPS MODEL

Management layer

Power System

MEMS
Sensors & (I\fIICI‘E‘:gI‘Id
Measurements Energy
Management
System)

BEEEER | (cyver-physica | 3D Visualization

pania, trol acti
_‘ conorasTon Resiliency

assessment

Cyber System

Adverse events (e.g. Ukraine Attack)

» Model of microgrid based on Miramer
microgrid in OpenDSS, power
simulator

» Cyber/ communication model of
microocraid Tn M7ninet A



D ) Deterlab

ns-3

Power System Communication Security Tools

Real-Time simulation SYStem * Cyber-Attack tools and
tools including RTDS, s Bmnlation taols stch s implementations
OPAL-RT NS-3, Mininet Defense and

Offline simulation tools R e e visualization tools such
including steady state CORE. DeterLab as IDS systems

and dvnamic tools '

IPC, TCP/IP, Remote Encapsulation Proxy interface, TCP/IP

41



Test Environment

ContrOI I Real Time Application

Center | = ‘I
Data Archival | _

Real Time
Communication
Simulator/Emulator

Applichtaten Layer

Communication
Layer

; | P51 ‘3 | P8l 'j-
e Sensor and c'ign e =
; Actuator Layer_ \‘! \‘!
Database PDC t mPMU

I Hardware Interrace/Ethernet I
Internet

y

Power System
Layer

OP5600 32-Core

Real Time Power System Simulator 42



— [

Network topology, generator
and load data, and switch data

Physical Microgrid
System

Types and model number of
devices used, position in
network topology.

& =

Cyber Assets

— Input ====> Output

Alerts (IDS)

CVE information,
current status of CVE

Switch status, real time voltage
and current

- > Cyber Asset Impact

Resiliency vs

Potential (CAIP)

Real Time
Cyber Impact
Severity (CIS)
vs Time

OPERATION PHASE

Report, Possible
Remedial Actions|

........... > Data Exchange

CyPhyR: Cyber-
Physical
Resiliency Tool

Cyber-Physical Resiliency

Vulnerability
Management,
Network analysis
for reconfiguration

Vulnerabilig |
ne report,

Measurements

Isolation of
cyber asset,
Reconfiguration

OUTPUT AND

CONTROL ACTIONS

10

— Without Metrics

Enhancing Resiliency (Ukraine Case Study)

2 3 4 5 6

= = Cybercontrol action = == - Physical control action
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Summary and Moving Forward




Takeaway #1: Resiliency is a Complex Problem

Power Grid - Flexible x Secure Cyber Resilient Power Control
Resiliency bl Infrastructure Infrastructure Applications

\ \
| \ |

Multiple switch Communication Generation
Macrogrid Authentication Automatic Generation Control
Minigrid Encryption Governor Control
Microgrid Computation Automatic Voltage Regulation
Nanogrid Access control Protection
Graceful disintegration Attestation Transmission
and interconnection Forensics State Estimation
Flexible management Patch management VAR Compensation
and control of resources Software Audits Protection
Economic and market System Management Distribution
incentive Intrusion Detection Load Shedding
Event Monitoring/Analytics Protection
Security Assessment Advanced Metering Infrastructures

* Resiliency metric isa MCDM problem * Resiliency is characteristics of the system



Takeaway #2: Finding Match in Data Analytics
Techniques and Power System Problems is VIT

Data Analytics and machine learning approaches needs to be applied after analyzing the power system
problem carefully. Finding match between machine learning strength and power system problem to be
solved is important.

Machine learning is only applicable in data-rich problems if no system model
is available (e.g. forecasting)

If model is available with rich data set, typically it will be two step approach:

apply machine learning to narrow down your possible options and refine it
with model based approach (e.g. event detection)

Machine learning will not give a good results based on state of the art for highly
complex and dynamic problems (e.g. transient stability, contingency analysis).

Validation and metric is important for these evolving solution technologies




Takeaway#3: Get Involved in PMU Data Analytics
and Applications

NASPI White Paper on Data Quality Requirements for PMU ‘
based Control Applications |

IEEE Synchrophasor based Power Grid Operation as part of
Bulk Power System Operation. White paper on a) Challenges
and Solutions in Implementing PMU based Applications in
Control Center) and b) Quality-Aware Applications

|
i/
oY

data-analytics-for-the-resilient-electric-grid/ ‘

https://sgdril.eecs.wsu.edu/workshop _conferences/real-time-

47



Thank You
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