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Overall	challenges
• Large	blackouts	have	the	most	risk,	but	are	
hardest:	rare,	dependent	events,	sparse	
data,	complicated	cascades	with	many	
mechanisms	for	initiation	and	propagation	
(mitigating	only	small	blackouts	can	in	
some	cases	increase	large	blackouts)

• Need	multiple	approaches:	
- high	level	statistical	models	
- simulation	of	detailed	models
- historical	data

I	will	discuss	historical	data	and	statistical	models	
driven	by	the	data 3
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Automatic (Unplanned) Transmission Line Outages:  2009 Complete

CHRONOLOGICAL ORDER

Outage#

Tred 

ID Line Name

Gen 

Flag kV District

Own 

Code

Length 

(Mi) Out Date/Time In Date/Time

Out 

Mins

Disp 

Cause# Dispatcher Cause

Field 

Cause# Field Cause Component Weather Temperature

157560 339 xxxx-xxxxxx  (230 kV) 230 xxxx 2 0.5 6/18/07 23:48 2/23/09 14:38 886550 81 Foreign Trouble 81 Foreign Trouble Circuit Breaker [DEPH080103]: [DEPH080103]:

164651 140 xxxx-xxxxxx  (230 kV) G 230 xxxx 1 61.9 1/2/09 2:35 1/2/09 17:43 908 31 Tree blown 31 Tree blown Transmission Equipment [ALVY090105]:rain & wind [SANT090106]: [ALVY090105]:40 [SANT090106]:

164652 497 xxxx-xxxxxx (115 kV) G 115 xxxx 1 24.8 1/2/09 3:55 1/2/09 6:59 184 90 Unknown 90 Unknown Transmission Equipment [HLSC090106]:Wind and rain [LKPT090107]:rain/wind [HLSC090106]:35 F [LKPT090107]:35 F

Detailed	historical	line	outage	data

• Includes	automatic	line	trip	times	to	nearest	minute
• All	utilities	in	USA	gather	and	report	TADS	data	to	
NERC;	similar	data	also	gathered	internationally
•We	use	BPA	data	that	is	published	on	the	web
• 10942	automatic	line	outages	over	14	years
• Simple	approach:	only	look	at	time	of	outages
• Group	outages	into	6687	cascades	and	then	
into	generations	by	their	timing 4



Generations	(tiers)	of	outages

Cascading	outages	can	be	divided	into	generations;
each	generation	of	outages	is	the	outages	very	close	in	time
e.g.	line	outages	within	one	minute

top-down	analysis;	
no	causal	relations	are	identified

can	show	generations	of	the	cascade	
evolving	on	the	network	
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Utility	network		
that	is	consistent	
with	outage	data	
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For	this	cascade,
red	lines	outage	
in	generations	
1,2,3,4,5,6
as	shown
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• Reality!	(no	modeling	assumptions)
• Utilities	have	detailed	outage	data	such	as	TADS;

If you start with available data, then methods can be applied. 

• Limited	to	past	observations
• Statistics	averaged	over	past	time;	grid	slowly	changes
• Data	processing	matters:
e.g.	what	counts	as	a	line	outage?

• Data	of	most	interest	(large	cascades)	is	sparse
• Cannot	experiment	or	ask	“what	if”

...	but	influence	graphs	can	work!

HISTORICAL	DATA	BASIC	CHARACTERISTICS
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• Direct	observation	of	initiating	and	propagating	outages
from	processed	data;	lines	most	involved	in	initiating
or	continuing	large	cascades:	“top-down	statistics”

• Validating,	calibrating	and	improving	simulations;	
distributions	of	quantities	can	be	matched

• Insights	into	cascading;	Enables	discovery
• Cascading	metrics
• Mitigation	of	large	cascades	with	influence	graphs

HISTORICAL	DATA	OPPORTUNITIES

Now	we	will	look	at	a	potential	cascading	metric	
based	on	the	number	of	generations	in	a	cascade	
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System	Event	Propagation	Slope	Index	
SEPSI	=	- slope	

slope = -2  and  SEPSI = 2 
means more long cascades 

slope = -3  and  SEPSI = 3 
means fewer long cascades 
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CASCADING	METRIC
System	Event	Propagation	Slope	Index	(SEPSI)

1. get	sample	of	enough	cascades	
2. empirical	distribution	of	number	of	

generations on	log-log	plot
3. SEPSI	=	- slope	of	fitted	line
4. SEPSI	smaller	means	worse	cascading

SEPSI	needs	testing	on	other	data	sets
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CHALLENGES
• historical	data	has	good	reality	but	we	
cannot	experiment	with	mitigations

• sparse	cascading	data

OPPORTUNITY:	Use	data	to	build	Markov	chain
influence	graph	that	describes	pair-wise	
interactions	between	cascading	line	outages
Get:
• probabilities	of	small,	medium,	large	cascades
• critical	lines	to	upgrade
• try	out	mitigation	of	large	cascades
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Simple	example	of	forming	
influence	graph	=	Markov	chain	
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Data-driven	influence	graph:	gray	is	real	grid;	
red	indicates	cascading	connections	

Can	analyze	influence	graph	to	suggest	
mitigations;	can	test	mitigations 16



Estimating	influence	graph	from	sparse	data

• Objective	is	to	estimate	Markov	chain	probability	
transition	matrices	(red	line	thicknesses)

• Combine	all	data	after	the	first	transition
• Use	Bayesian	methods	to	improve	estimates	of	
stopping	probabilities

• Account	for	outages	during	cascade	that	are	
independently	generated

• Adjust	each	transition	so	that	it	matches	
observed	propagation	at	that	generation
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Estimating	probabilities	of	cascade	size
• Given	Markov	chain	transition	matrices	and	the	
probability	distribution	of	initial	outages,	can	
calculate	probability	of	stopped	cascade	at	
generation	k	and	hence	the	probability	of	cascade	
length	k	or	more.

• Hence	the	probabilities	of	
- small	cascades	(1-2	generations)
- medium	cascades	(3-9	generations)
- large	cascades	(10	or	more	generations)

• Then	we	use	bootstrap	to	estimate	the	
uncertainties	of	these	probabilities
e.g.	probability	of	large	cascades	is	estimated	to	
within	a	factor	of	1.5	with	95%	probability 18



Markov	chain	theory	gives	the	
lines	eventually	most	involved	

in	long	cascades
• Every	cascade	has	a	series	of	transient	states	and	then	stops	

(goes	to	the	state	with	no	lines	out)
• But	before	they	stop,	cascades	tend	towards		

a	stationary	distribution	over	the	transient	states,
that	is	an	eigenvector	of	a	submatrix	of	the	transition
matrix.	We	calculate	this	eigenvector.

• The	most	likely	states	in	the	stationary	distribution	are	the	
states	eventually	most	involved	in	long	cascades

• “Projecting”	the	states	down	to	the	lines	gives	the	
critical	lines	eventually	most	involved	in	long	cascades

• Mitigation	is	modeled	by	reducing	the	probability	
of	transitions	to	the	critical	lines
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Distribution	of	cascade	size	
before and after

upgrade	of	10	lines	most	
critical	for	cascading

large cascades (>10 generations) reduced by 45% 
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Conclusions
• Data	has	rich	opportunities.	Also	if	you	start	with	
available	data,	then	methods	can	be	applied.	We	use	
standard	utility	data	(TADS).

• Can	see	cascade	spread	on	network	in	generations
• Number	of	generations	has	a	Zipf distribution	for	our	
data	set.	Slope	of	line	suggests	a	cascading	metric.

• Influence	graph	
- Markov	chain	that	describes	pairwise	outage	
interactions;	cascades	move	along	influence	graph
- Transition	matrices	can	be	estimated	and	
analyzed	to	give	lines	critical	for	propagation
- Mitigating	large	cascades	by	upgrading	those	lines	
can	be	tested	on	influence	graph
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• I	offer	to	process	your	historical	TADS	data to	try	out	the	methods
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Questions?

Ian	Dobson
email	dobson@iastate.edu

webpage	iandobson.ece.iastate.edu
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