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Introduction



Impacts of Renewable-Based Power Generation Resources

> Deep penetration of renewable-based generation imposes additional
requirements on ancillary services including;:

® Frequency regulation (in bulk power systems)
® Reactive power support (in distribution systems)
P> Frequency regulation in bulk power systems is typically achieved by
controlling large synchronous generators
® Resources in distribution systems are not utilized for this task
> Reactive power support in distribution systems is provided by devices
such as load tap changers (LTCs) and fixed /switched capacitors

® These devices are not designed to manage high variability in voltage
fluctuations induced by renewable-based generation
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The Solution

» An increasing number of DERs are being integrated into distribution
systems

» DERs could potentially be utilized to provide ancillary services if
properly coordinated by, e.g., an aggregator

PV systems Electric Vehicles Fuel Cells Residential Storage
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Need for Data-Driven Coordination

tie line

bulk power system power distribution system

» DER aggregators needs to develop appropriate coordination schemes so
DERs can collectively provide services that meet certain requirements

» Model-based schemes may be infeasible due to the lack of accurate models

» Data-driven schemes that only rely on measurements provide a promising
alternative for developing efficient coordination schemes
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Presentation Overview

Objective

To develop data-driven coordination frameworks for assets (DERs, LTCs)
in distribution systems

> Part |. Active power provision problem

® total active power exchanged between the distribution and bulk systems
needs to equal to some amount requested by the bulk system operator

> Part Il. Voltage regulation problem

® the voltage magnitude at each bus needs be maintained to stay close
to some reference value
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Outline

DER Coordination for Active Power Provision
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Optimal DER Coordination Problem (ODCP)

@ Synchronous generator

Inverterinterfaced source
Load

= Bus

' bulk grid |

Determine the DER active power injection vector, p9, that minimizes total

cost of operation while satisfying:

C1. The power exchanged with the bulk system, y, tracks some
pre-specified value, y*

C2. The active power injection from each DER does not exceed its
corresponding capacity limits, i.e., p? < p? <p?

C3. The power flow on each line does not exceed its maximum capacity,
e, —f<f<f

S — _—
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Input-Output System Model

> 1y can be written as a function of p?, p?, q¢ as follows:
y = h(p’,p" q"

> |/ captures the impacts from both the physical laws as well as the
effect of any reactive power control scheme

Assumption 1

H1. The rate of change in y w.r.t. p9 is bounded for bounded changes in
the DER active power injections

H2. The total active power provided to the bulk power system will increase
when more active power is injected in the power distribution system
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ODCP Formulation
» The ODCP can be formulated as:

minimize ¢(p?)

pIE[p9,pY]
subject to
d _d
h(p’,p% q") =y,
—f<M'(Cp-p) < f
p? DER active power injections
p?,p? DER upper and lower capacity limits

p®, q* Load active, reactive power demands

Requested power to be exchanged with bulk grid
f Line flow limits

M Reduced node-to-edge incidence matrix

C Matrix mapping DER indices to buses
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Data-Driven DER Coordination Framework

» Data defining the ODCP problem:

® Cost function, ¢(-)

DER capacity limits, p?, p?

Network topology and DER location, M,C

Load active and reactive power demand, p?, g¢
Line flow limits, f

Input-output model, A(-,-, ) < Assumed unknown

> Real-time measurements available:
® DER active power injections, p9[k], k=1,2,...
® Active power exchanged with the bulk system, y[k], k =1,2,...

)

Framework Building Blocks

» An input-output (I0) model estimator that uses available real-time
measurement data

> A controller that uses uses the identified IO model to solve the ODCP
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Two-Timescale Coordination Framework

controller solves ODCP

RERE
i:::::%{\::::iuwﬁm

estimator updates sensitivities

Ll o
T s

iterations in estimation process

Estimation Process

p? and g? remain approximately constant between two time instants;
therefore, changes in y[k] that occur across time steps in the estimation
process depend only on changes in p?[k]; thus,

ylk] = h(pg[k],pd, qd), k=0,1,...
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Input-Output Model as a Linear Time-Varying System

» For notational simplicity, define u[k] = pI[k], u = p?, w = pY, and
m=[(p)",(g")"]"; then, the 10 model can be written as:

ylk] = h(ulk],w), k=0,1,...,

» For k > 1, the above equation can be transformed into the following
equivalent linear time-varying model:

ylk] = ylk — 1] + [K] " (u[k] — ulk — 1))

where ¢[k]T = [¢:[k]] = S—Z an with @[k] = apulk] + (1 — az)ulk]

> k] is referred to as the sensitivity vector at time step k

» The entries of ¢[k] are bounded for all k by Assumption 1
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Estimator — Estimation Step

> At time step k, the objective of the estimator is to obtain an estimate
of ¢[k], denoted by ¢[k], using available measurements of w and y

» Problem P1:

[k = argmin  J(
$eQ=[b; bi]"

*e~>

) = 5ol — 1]~ 5k — 1)?

subject to

glk =1 =ylk — 2]+ ¢ (ulk — 1] — ulk - 2])
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Estimator — Control Step

> The objective of the controller during the estimation process is to
ensure that the output tracks the target [Different from the ODCP]

» Problem P2:

ulk] = argmin J(u) = - (y* — §[k])°
ueU=[u,u]

subject to
k] = ylk — 1) + S[k] T (v — u[k — 1))

> Note that ¢[k] is used to predict the value of y[k] for a given u
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Estimation Process Workflow

control step
k=1 o> ylk—1] — d[k] = ulk] = ylk] — Sk +1] -
N————

estimation step

> At the beginning of iteration &, y[k — 1] is used in Problem P1 to
update the sensitivity vector estimate, ¢|[k]

» The updated sensitivity vector estimate, ¢|[k], is then used in
Problem P2 to determine the control, u[k]

» Then, the DERs are instructed to change their active power injection
set-points based on wu[k]

» Problems P1 and P2 are not solved to completion for each k

P Instead, we iterate the projected gradient descent algorithm that
would solve them for one step at each iteration k
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Simulation Setup
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Figure 1: The IEEE 123-bus distribution test feeder.
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Tracking Performance During Estimation
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Figure 2: Tracking error for 8 = 0.02 under various tracking targets.
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Figure 3: Tracking error for y* = —3000 kW and various constant control step sizes.
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Estimation Accuracy

» Mean absolute error (MAE) of estimation errors:

MAE  iet [9:lk] — éilk] ’
n

where n is the number of DERs
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Figure 4: Estimation error under various control step sizes.

Dominguez-Garcia (ECE ILLINOIS) Data-driven Coordination aledan@ILLINOIS.EDU



Outline

LTC Coordination for Voltage Regulation



Background

> Voltage regulation transformers—also referred to as Load Tap
Changers (LTCs)—are widely utilized in power distribution systems to
regulate voltage magnitudes along a feeder

> Model for a load tap changer on a line connecting buses ¢ and j:

te:1l re+iwy j

Ty

Primary side voltage magnitude
Secondary side voltage magnitude
Line receiving end voltage magnitude
Tap ratio

Transformer + line resistance
Transformer + line reactance

> The tap ratio, t;, typically takes 33 discrete values ranging from 0.9
to 1.1, by an increment of 5/8%, i.e.,

t € T = {0.9,0.90625, - - - ,1.09375,1.1}
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Problem Motivation

» Current LTC control schemes are myopic:

® Based on local voltage measurements

® Do not account for future uncertainty effects on current control actions

> These schemes are no longer suitable because of increased variability
and uncertainty in uncontrolled power injections arising from:

® Residential PV installations

® Electric vehicles

> In addition, the use of controlled DERs for providing frequency
regulation to the bulk grid has an impact on voltage regulation
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Volt/VAR Control Architecture

Fast Time-Scale Control

—
H—+———+— A time
to t t
f f f

Slow Time-Scale Control

» Slow Time-Scale: LTCs are periodically dispatched so as to reduce
mechanical wear

» Fast Time-Scale Control: Power-electronic-interfaced DERs with
reactive power provision capability
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N Legend
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Objective

Find a policy for determining the LTC tap positions based on
measurements of current

» tap ratios
» bus voltage magnitudes

so as to minimize bus voltages deviations from some reference value as
power injections change as time evolves
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Power Distribution System Model

» The relation between square voltage magnitudes and active/reactive
power injections and LTC tap ratios at instant k£ can be written as

VK] = g(plk], q[K], t[K])

V[k] Vector of voltage magnitudes at instant k
plk], g[k] Vector of active, reactive, power injections at instant &
t[k] Vector of tap ratios at instant &

» Network topology and transmission line parameters are encapsulated
into g
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Assumptions

T1. Changes in active and reactive power injections at instant k,
Aplk] := p[k + 1] — p[k] and Aq[k] := q[k + 1] — q[k], are random

T2. Active and reactive power injections k, p[k] and gq[k], are not
measured and their joint probability distribution is unknown

T3. Network topology is known, i.e., M is known

T4. Line parameters are unknown, i.e., r and @ are unknown

» Because of Assumption T1 is natural to formulate the problem as a
Markov Decision Process (MDP)

» Because of Assumptions T2 — T4, we will have to resort to
reinforcement learning (RL) techniques to solve this MDP
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LTC Coordination Problem as an MDP

> State space, S: the state, s, is composed of tap ratio and squared
voltage magnitude vector, i.e., s = (t,v), t € TL v e RV, thus,

Sc T xRN

> Action space, A: the action, a, is the change in LTC tap ratio
between two consecutive time instants, i.e., a = At,
At € AT =: A, where

AT = {0,£0.00625, - - - , £0.19375, £0.2}

is the set set of feasible tap ratio changes

» Reward function, R: the reward when the system transitions from
state s = (t,v) into state s/ = (t/,v’) after taking action a = At is

1
R(S, a, 8/) = _NHUI - ’U*H,

i.e., we are penalizing voltage deviation from some reference value v*
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LTC Coordination Problem as an MDP

> State transitions: governed by random changes in active and reactive
power injection vectors, Ap :=p' —p and Aq :=q' — q:

S/ = h(s7 a’? Ap’ Aq)

® Network topology and transmission line paramters are encapsulated

into h
® Probability of transitioning from s to s’ under action a, P(s'|s, a),
could be computed if A and the joint pdf of Ap and Aqg were know

Objective
Find a policy 7 : (§,v) — At, t € TE', v e RN, At € AT so that
1 - k *
—~ DB lvlk + 1] — o] | #0] = to, v[0] = o]

N
k=0

is maximized (equivalent to minimizing voltage deviations)
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Solving the LTC Coordination Problem
> Let R(s,a) denote the expected reward for the pair (s, a)

» The MDP is solved when we find Q*(s,a),s € S,a € A, and
7*(s),s € S, satisfying

* :R / * / /
Q*(s,a) (S,a)+vs§s7’(8 |5,a) max Q*(s', a')

7 (8) = argmax Q*(s, a)

> Two issues in our setting:
I1. We do not know P(-|-,-)

[2. Even if we knew P(-|-,-), we could not solve for Q*(s, a) efficiently
because of the curse of dimensionality in the state and action spaces

» To circumvent Issue |1, we apply a model-free RL algorithm that
utilizes transition samples obtained via a virtual transition generator

> To circumvent Issue 12, we use function approximation and a learning
scheme for sequential estimation of the action-value function
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LTC Coordination Framework Building Blocks
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Action-Value Function Value Estimator

> Let Q(, -) denote an approximation of the optimal action-value
function Q(-, )

» Methods for obtaining Q(-, -) include:
® Parametric functions

® Neural networks
» Here we consider a linear parametrization of Q(, F
A T
Q(s,a) =w (s, a),

where w € R/ is the parameter vector and ¢ : S x A — R is some
basis function

> Let D ={(s,a,r,s):s,8 €8,a € A} denote a set (batch) of
transition samples obtained via observation or simulation

» We use least-square policy iteration (LSPI) algorithm [Lagoudakis and
Parr, 2003] to find w that best fits the transition samples in D
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Challenges

» The LSPI algorithm requires adequate transition samples that spread
over S x A

> This is challenging in power systems since the system operational
reliability might be jeopardized when exploring randomly

® We address this by developing by generating samples via a virtual
transition generator that leverages historical system operational data

» The LSPI also suffers from the curse of dimensionality when the
action space is large—the case in the LTC coordination problem

® We address this by using a sequential scheme that breaks the learning
problem into smaller problems and uses the LSPI algorithm on those

Dominguez-Garcia (ECE ILLINOIS) Data-driven Coordination aledan@ILLINOIS.EDU 28/32



I[EEE 123-bus Test Feeder

112 113 114
120 51 116 121 110
30 o O e e 109
107
29 47 108 106 104
2 “ 103
. 105 102
3 31 44 45
% 25 03 64 101 122
2 42 % 90 100
y 73 » 119 98
71
24 40 66 63 97 69 70
21 115 68
2 35 62 67 s
118 74
18 AL ¥ o () 7
20 2 72 w7
57 J’f‘{\. 77
14 58 56 61 76
10 59 55 " 80
54 85
0 2 (7 2 % \ o @0 . s
9 17 \ 82
13 9% o4 87 83
1 8 89
91
12 34 93
95
3e—e—e 15 17
4 ¢ 6
16

aledan@ILLINOIS.EDU




|[EEE 123-bus Test Feeder Results
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Concluding Remarks



Conclusions

> We developed a data-driven coordination framework for coordinating
assets in distribution systems to provide ancillary services:

» The proposed framework:

® |t assumes no prior information on the distribution system model,
except knowledge of network topology

® |t mainly relies on measurements

® |t is adaptive and robust to changes in operating conditions

> Refer to the following papers for more details:

1. H. Xu, A. Dominguez-Garcia, and P. Sauer, “Data-driven Coordination
of Distributed Energy Resources for Active Power Provision,” [EEE
Transactions on Power System, 2019.

2. H. Xu, A. Dominguez-Garcia, and P. W. Sauer, “Optimal tap setting of
voltage regulation transformers using batch reinforcement learning,”
IEEE Transactions on Power System, 2019.
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Questions?

Alejandro D. Dominguez-Garcia

e-mail: aledan®@ILLINOIS.EDU
url: https://aledan.ece.illinois.edu
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A Primer on Markov Decision Processes

» A Markov Decision Process (MDP) is defined as a 5-tuple
(S, A, P, R,v) where

S is a finite set of states

A is a finite set of actions

P is a Markovian transition model

R:Sx AxS — Ris a reward function

v € [0,1) is a discount factor

> Let s[k| and a[k] denote random variables (r.v.'s) respectively
describing the value the state and action take at time instant &

> Let r[k] denote a r.v. describing the reward received after taking
action alk] in state s[k] and transitioning to state s[k + 1]; then

rlk] = R(s[k], alk], s[k + 1])

> A deterministic policy 7 is a mapping from S to A, i.e.,
a=m(s),s€S,acA
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A Primer on Markov Decision Processes

Objective

Given some initial state, sg, we want to find a deterministic policy, 7v*, that
maximizes the expected value of the cumulative discounted reward, i.e.,

" = arg maxi’ykE [r[k] | s[0] = so}
T k=0
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A Primer on Markov Decision Processes

» The action-value function under policy 7 is defined as
Q™ (s,a) = Z’ykE[r[k] | s[k] = s,alk] =a;7|, s€S8, acA
k=0

» The optimal action-value function, Q*(s,a),s € S,a € A is the
maximum action-value function over all policies, i.e.,

Q*(s,a) =max Q™ (s, a)
T
> Q*(s,a),s € S,a € A, satisfies the following Bellman equation:

* :E / * / /
Q(e0) =Bl | sa) 7 3 Pl a) ma (e’ )

» The optimal policy, w*(s), s € S, is obtained as follows:

7" (s) = argmax Q*(s, a)

» The MDP is solved if we find Q*(-,-) and the corresponding 7*(-)
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LSPI Algorithm Iteration

> Let w; denote the estimate of w at the beginning of iteration 4
» For each transition sample (s, a,r,s’) € D, compute

a' = argmaxw, ¢(s, a)
acA

» Update the estimate of w as follows:
_ -1
w1 =B"b

where

B= Y ¢s.0)(e(s.a)-16(s.a))

(s,a,r,s")ED

b= Z ¢(s,a)r

(s,a,r,s")ED

TV
rank-1 matrix
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Timeline

Fast Time-Scale Control

/—/H
A+ Ao time
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Slow Time-Scale Control

» Policy updated every K AT units of time, e.g., 2 hours

» Updated policy used for tap setting for K time instants
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