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The Midcontinent Independent System Operator (MISO) defined 3 

Ds for the future grid:
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Demarginalization

Midcontinent Independent System Operator, MISO forward, March 2019. 
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There are, in fact, 5 Ds:



Distributed Energy Resources

• Increasing penetration level of DERs: 

• Renewables: Global movement towards clean, affordable, and 

sustainable energy

• Energy democracy move: A person’s desire to possess his or her 

own energy system

Energy democracy move is increasing the DER 

penetration level despite economies of scales for bulk 

generation.
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Distributed Energy Resources

The key question is NOT: why move to a DER based system?

THE TRAIN HAS LEFT THE STATION!

The key question is: how to do it in a way that will continue to 

provide reliable service at affordable prices?
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How to leverage DERs?
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The potential of collective participation of prosumers has yet to be thoroughly 

achieved. Its pursuit is nontrivial as the reliability, guarantees, and quality of 

grid services by end-users are not well understood and are more difficult to 

quantify than through conventional bulk generators.

Disruptive opportunities are achievable when engineering solutions 

encapsulate the dynamic characteristics of prosumers via socially-

aware and risk-aware methods.



Existing challenges

• The existing strategy to manage the challenges of bulk renewables and 

DERs: more infrastructure and conventional generators.
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In May 2019, CAISO curtailed 225GWh of solar and wind energy

California Independent System Operator, Managing oversupply. 



How to leverage DERs?
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Benefits of DERs for grid services (both energy and ancillary services):

• Prime location: 

• Infrastructure deferrals 

• Flexibility closest to demand

• Diversity in characteristics, capability, probability of defaulting on 

obligation, flexibility, geographical location

• Often seen as a hindrance

• But diversity is key to hedging when managing a system with 

stochastic resources



Design of operational plans to include DERs

• Expanded ISO/RTO to the distribution level 

• Not enough visibility

• Computationally infeasible

• DERs aggregation through DSO and third party aggregators

• Scheduling, reliability, and retail settlements handled at DSO 

• Distribution markets

• Trading platforms for peer to peer transactions
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DER aggregation

• Aggregation has been discussed as a holistic approach to get rid of all complexities: large 

number of small resources, controllability, and scheduling 
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Hawaiian Electric Company, Seams for Shines, Shines Program Review, SunShot Program, US Department of Energy, Feb. 2017. [Online]. Available: 

https://www.energy.gov/sites/prod/files/2017/05/f34/SHINES%20Program%20Review_HECO.pdf.

Indiscriminate aggregation makes the prediction of aggregated net load 

non-trivial.

80% commercial and 20% residential99% residential

https://www.energy.gov/sites/prod/files/2017/05/f34/SHINES%20Program%20Review_HECO.pdf


Energy as a technological, economical, and social phenomenon

• Social science research shows that energy is not merely a 

technological and economical phenomenon but is deeply 

embedded within social, geopolitical landscapes

• It is critical to account for social aspect of energy in design and 

operation of smart grids. Examples:

• DER adoption

• Different rate of EV adoption and use; higher trends in particular 

neighborhoods

• Demand response participation

• Distribution system upgrades

• Uncertainty of participation in smart grid operation
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[1] C.A. Miller, A. Iles, and C. F. Jones, “The social dimensions of energy transitions,” Science as Culture, vol. 22, no. 2, pp.135-48, May 2013.

[2] T. Skjolsvold, M. Ryghaug, and T. Berker, “A traveler’s guide to smart grids and the social sciences,” Energy Res. Social Sci., vol. 9, pp. 1-8, Sep. 2015.

[3] K.S. Zimmerer, “New geographies of energy: Introduction to the special issue,” Annals of the Association of American Geographers, vol. 101, no. 4, pp. 705-711, May 2011.



Design of socially-aware solutions

• Analysis of customers’ behavior has been classified to the domain of

behavioral economics in research communities.

• Recent advances in AI algorithms empower characterizing prosumers’

behaviors to enable design of socially-aware engineering solutions without

modeling the behavior itself.
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Advanced artificial intelligence algorithms, which account for 

demographic characteristics of prosumers, are required to enable 

accurate classification, aggregation, prediction, and uncertainty 

characterization of prosumers and their DERs. 



A Data-Driven Approach for Analysis of 

Demand Response 
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Smart meter data study

• Data from an electric utility: 

• Over 15,000 customers 

• Demographic data includes income, household size, dwelling, start date of 

price plan, home ownership and family composition (e.g., age, marital 

status, children)

• Consumption, solar production, and DR 

• 15-minute to 1-hour intervals for 1-2 years.

• Two Time-of-Use Plans:
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DR Programs On-Peak Time On-Peak Price ($/kWh) Off-Peak Price ($/kWh) No. of Customers

E21 (Jul Aug) 3 - 6 p.m. 0.3588 0.0864 1776

E21 (May Jun Sep Oct) 3 - 6 p.m. 0.3033 0.084 1776

E26 (Jul Aug) 1 - 8 p.m. 0.2226 0.0741 1974

E26 (May Jun Sep Oct) 1 - 8 p.m. 0.1957 0.0738 1974

• Note: E21 has shorter on-peak period, more expensive on-peak price, and 
larger difference between on-peak and off-peak prices.



Conducted analysis
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Machine Learning algorithms
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Three well-established machine learning algorithms are utilized 

to obtain customers’ consumption baseline.

• Artificial Neural Network (ANN)

• K Nearest Neighbors (KNN)

• Ridge Regression (RR)

Evaluation Metrics:

𝑅2 = 1 −
σ𝑖 𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝑦𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡 2

σ𝑖 𝑦𝑖
𝑡𝑟𝑢𝑒 − 𝑦𝑖

𝑚𝑒𝑎𝑛 2 𝑅𝑀𝑆𝐸 =
σ𝑖=1
𝑇 𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝑦𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑇

Coefficient of determination Root-mean-square error



Artificial Neural Network
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• A strong ability to fit into highly nonlinear functions

• Use Backpropagation to train the model

• Activation function: ReLu

• Number of layers: 3 hidden layers

• 85% Training set and 15% Testing set



K-nearest Neighbors 
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• Non-parametric method

• Uses k data points that are closest to the new data to predict the response 

• Number of neighbors: 3

• Distance metric: Euclidean distance

• 85% Training set and 15% Testing set



Ridge Regression 
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Min ෍

𝑛=1

𝑁

𝒀𝑛 −𝑾𝑇𝜙 𝑿𝑛
2 + 𝜆𝑾𝑇𝑾

This ML algorithm solves a regression model where the loss function is the 

linear least squares function and regularization is given by the l2-norm.

l2-normMinimize error

Strictly convex!

Guarantee Global Optimal



Consumption baseline
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Trained model performances for testing samples.

Metrics
Number of 

Customers
ANN KNN RR

R2 30 0.943 0.932 0.948

RMSE (kW) 30 7.26 7.9 6.88

R2 50 0.959 0.944 0.962

RMSE (kW) 50 10 11.7 9.64

R2 100 0.982 0.974 0.983

RMSE (kW) 100 14.33 17 13.96

Accuracy of baseline load prediction model is high. The customers’ 
consumption baselines predicted by these trained models are considered as 
their true baseline load in this study.



Trained model performances
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𝑅2 = 0.962 𝑅𝑀𝑆𝐸 = 9.644 kW



Clear load reduction and load 

shifting effect

Long on-peak period and smaller 

price gap.

23

E21 price plan:

On-peak hours: 3 p.m. to 6 p.m.

Summer Peak: On-peak: $0.3588/kWh;  Off-peak: $0.0864/kWh

E26 price plan:

On-peak hours: 1 p.m. to 8 p.m. from

Summer Peak: On-peak: $0.2226/kWh;  Off-peak: $0.0741/kWh

On-peak load reduction 



On-peak consumption reductions (E21)
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• Each point represents 15-min load reduction for the specified group.

25

E21: E26:

On-peak load reduction 



Emergency Demand Response
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• We received the dataset contains the customers who participate in 
emergency demand response (EDR) program.

• Nest thermostat

• Maximum of 15 EDR per year

• The electric utility pre-cools the customers’ house one hour in 
advance.

• Customers have the right to readjust their air-conditioner setting 
during the event.



Emergency Demand Response

Here is an example showing the consumption baseline and actual 

consumption in the DR event day, Jun/22/2018.
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Emergency Demand Response
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• Average percentage load reduction results for each income level and the number of 

occupants



Uncertainty characteristics 

• These differences will be more severe when other smart grid technologies are 

integrated.

• If methods indiscriminately aggregate prosumers and use the same uncertainty 

model for all, then they fail to accurately capture prosumer behavior and response. 29



State-of-the-Art Artificial Intelligence for 

DER Management  

30



Necessity of advanced AI techniques

• Machine learning (ML) algorithms are helpful for a wide range of tasks. 

Black-box ML algorithms can make predictions; however, it is still critical to 

interpret the predictions. 

• What if a different ML algorithm is applied? What if data from a different 

source is used? What if the data did not cover sufficient types of a particular 

behavior?

• Causal inference is defined with three levels: association, intervention, and 

counterfactuals. 

• At the lowest level, no association implies no causation; consequently, 

association is the foundation for classical ML methods that learn basically 

association from data. Association methods may be useful; however, they are 

often inadequate and unreliable when correlations are spurious.

• Advanced AI algorithms are needed to capture prosumers’ behavior. 31

Uncertainty?

Uncertainty LowObserved Data

Unseen Data

Seen Context 

Unseen Context 



Causal Learning for DER management

𝑟 = 𝑓 𝑝, 𝑛, 𝑡, 𝑑, 𝜀1
𝑎 = 𝑓(𝑝, 𝑛, 𝑒, 𝑑, 𝜀2 )
𝑐 = 𝑓 𝑝, 𝑡, 𝑑, 𝜀3
𝑔 = 𝑓(𝑠, 𝑡, 𝜀4 )

𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝑠′𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑓(𝑏, 𝑟, 𝑎, 𝑐, 𝑔, 𝜀5 )

𝑌 = 𝔼𝜔~𝑃 𝜔 𝑦 = න
𝜔

𝑦𝑃 𝜔

𝑌∗ = න
𝜔

𝑦𝑃∗ 𝜔 = න
𝜔

𝑦
𝑃∗ 𝜔

𝑃 𝜔
𝑃 𝜔 = න

𝜔

𝑙 𝜔 𝑃 𝜔
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p: Price b: Base consumption

r: Regular 

consumptions (e.g., 

cooking, laundry)

a: Air conditioning

c: Electric vehicle

g: On-site generation
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n: No. of people

t: Time

d: Day of week

e: Temperature

s: Sunshine



Chance Constrained Distribution System 

Scheduling

33



Optimal scheduling of distribution 

systems: Bid-risk-dispatch model

34

Objective: Design an innovative operational paradigm that leverages 

the full flexibility of DERs while accounting for risk due to stochastic 

resources. 



Optimal scheduling of distribution 

systems: Bid-risk-dispatch model

• Without adequate representation of uncertain factors, risk-driven models may 

fail if the realized scenario were not among the modeled uncertainty. 

• The majority of risk driven methods in power system literature are dedicated to 

the bulk system. For distribution systems, there are many other complicating 

factors (multi-phase, unbalanced, mutual coupling). 

• Prior work often considers uniform uncertainty characteristics for all resources. 

The proposed model accounts for varying uncertainty across prosumer groups 

and operational time periods. 
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ACOPF with Second Order Cone 

Programming

𝑀𝑖𝑛: ෍
∀𝑡
൥

൩

𝐶𝑡
𝑀 𝑃𝑀,𝑡, 𝑄𝑀,𝑡, 𝑅𝑀,𝑡 +෍

∀𝑟𝑔

𝐶𝑟𝑔
𝑈_𝑅𝐸𝑁 (𝑃𝑟𝑔,𝑡

𝑈_𝑅𝐸𝑁, 𝑄𝑟𝑔,𝑡
𝑈_𝑅𝐸𝑁, 𝑅𝑟𝑔,𝑡

𝑈_𝑅𝐸𝑁) + ෍

∀𝑑𝑒𝑟

𝐶𝑑𝑒𝑟
𝐷𝐸𝑅(𝑃𝑑𝑒𝑟,𝑡

𝐷𝐸𝑅 , 𝑄𝑑𝑒𝑟,𝑡
𝐷𝐸𝑅 , 𝑅𝑑𝑒𝑟,𝑡

𝐷𝐸𝑅 )

+෍

∀𝑒𝑣

𝐶𝑒𝑣
𝐸𝑉(𝑃𝑒𝑣,𝑡

𝐸𝑉 , 𝑄𝑒𝑣,𝑡
𝐸𝑉 , 𝑅𝑒𝑣,𝑡

𝐸𝑉 ) + ෍

∀𝑏𝑒𝑠𝑠

𝐶𝑏𝑒𝑠𝑠
𝐵𝐸𝑆𝑆(𝑃𝑏𝑒𝑠𝑠,𝑡

𝐵𝐸𝑆𝑆 , 𝑄𝑏𝑒𝑠𝑠,𝑡
𝐵𝐸𝑆𝑆 , 𝑅𝑏𝑒𝑠𝑠,𝑡

𝐵𝐸𝑆𝑆 )
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𝑅𝑛𝑗,𝑥∅,𝑡 = 𝑉𝑛,𝑥,𝑡𝑉𝑗,∅,𝑡 cos 𝜃𝑛,𝑥,𝑡 − 𝜃𝑗,∅,𝑡 , 𝐼𝑛𝑗,𝑥∅,𝑡 = 𝑉𝑛,𝑥,𝑡𝑉𝑗,∅,𝑡 sin 𝜃𝑛,𝑥,𝑡 − 𝜃𝑗,∅,𝑡 , 𝑈𝑛,𝑥,𝑡 =
𝑉𝑛,𝑥,𝑡

2

2

𝑃𝑛,𝑥,𝑡
𝑗

= 2𝑈𝑛,𝑥,𝑡𝐺𝑛𝑗,𝑥𝑥 +෍
∅=𝑎
∅≠𝑥

𝑐

𝑅𝑛𝑛,𝑥∅,𝑡𝐺𝑛𝑗,𝑥∅ + 𝐼𝑛𝑛,𝑥∅,𝑡 𝐵𝑛𝑗,𝑥∅ +෍

∅=𝑎

𝑐

−𝑅𝑛𝑗,𝑥∅,𝑡𝐺𝑛𝑗,𝑥∅ − 𝐼𝑛𝑗,𝑥∅,𝑡 𝐵𝑛𝑗,𝑥∅

𝑄𝑛,𝑥,𝑡
𝑗

= − 2𝑈𝑛,𝑥,𝑡𝐵𝑛𝑗,𝑥𝑥 + σ∅=𝑎
∅≠𝑥

𝑐 𝐼𝑛𝑛,𝑥∅,𝑡𝐺𝑛𝑗,𝑥∅ − 𝑅𝑛𝑛,𝑥∅,𝑡 𝐵𝑛𝑗,𝑥∅ + σ∅=𝑎
𝑐 −𝐼𝑛𝑗,𝑥∅,𝑡𝐺𝑛𝑗,𝑥∅ + 𝑅𝑛𝑗,𝑥∅,𝑡 𝐵𝑛𝑗,𝑥∅

2𝑈𝑛,𝑥,𝑡𝑈𝑗,∅,𝑡 ≥ 𝑅𝑛𝑗,𝑥∅,𝑡
2 + 𝐼𝑛𝑗,𝑥∅,𝑡

2

𝑔 𝑃𝑀,𝑡 , 𝑃𝑟𝑔,𝑡
𝑈_𝑅𝐸𝑁 , 𝑃𝑑𝑒𝑟,𝑡

𝐷𝐸𝑅 , 𝑃𝑒𝑣,𝑡
𝐸𝑉 , 𝑃𝑏𝑒𝑠𝑠,𝑡

𝐵𝐸𝑆𝑆 , 𝑄𝑀,𝑡, 𝑄𝑟𝑔,𝑡,𝑐
𝑈_𝑅𝐸𝑁, 𝑄𝑑𝑒𝑟,𝑡

𝐷𝐸𝑅 , 𝑄𝑒𝑣,𝑡
𝐸𝑉 , 𝑄𝑏𝑒𝑠𝑠,𝑡

𝐵𝐸𝑆𝑆 = 0

ℎ 𝑃𝑀,𝑡 , 𝑃𝑟𝑔,𝑡
𝑈_𝑅𝐸𝑁, 𝑃𝑑𝑒𝑟,𝑡

𝐷𝐸𝑅 , 𝑃𝑒𝑣,𝑡
𝐸𝑉 , 𝑃𝑏𝑒𝑠𝑠,𝑡

𝐵𝐸𝑆𝑆 , 𝑄𝑀,𝑡 , 𝑄𝑟𝑔,𝑡,𝑐
𝑈_𝑅𝐸𝑁 , 𝑄𝑑𝑒𝑟,𝑡

𝐷𝐸𝑅 , 𝑄𝑒𝑣,𝑡
𝐸𝑉 , 𝑄𝑏𝑒𝑠𝑠,𝑡

𝐵𝐸𝑆𝑆 ≥ 0

Second Order Cone Programming:



Chance constrained distribution system scheduling

𝑃 𝑉n,min ≤ | ෨𝑉𝑛,𝑡| ≤ 𝑉n,max ≥ 1 − 𝜀

𝑃 ( ෨𝑃𝑛,𝑡
𝑗
)2+( ෨𝑄𝑛,𝑡

𝑗
)2≤ 𝑆𝑛,𝑗

𝑚𝑎𝑥 ≥ 1 − 𝜀

𝑃 𝑆𝑀,𝑡 − 𝑅𝑀,𝑡 ≤ ሚ𝑆𝑀,𝑡 ≤ 𝑆𝑀,𝑡 + 𝑅𝑀,𝑡 ≥ 1 − 𝜀
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ACOPF with 

SOCP and 

DNE%

System State 

Selection Using 

MCS

Update DNE%

Generate Empirical 

Distribution 

Functions 

ACOPF Operational 

Adequacy 

Assessment

Risk within an 

Acceptable Range?

Risk Aware 

Operational Plan

Yes

No

෍

∀𝑟𝑔

𝑃𝑟𝑔,𝑡
𝑈_𝑅𝐸𝑁 + ෍

∀𝑑𝑒𝑟

𝑃𝑑𝑒𝑟,𝑡
𝐷𝐸𝑅 +෍

∀𝑒𝑣

𝑃𝑒𝑣,𝑡
𝐸𝑉 ≤ 𝐷𝑁𝐸%෍

∀𝑙

𝑃𝑙,𝑡
𝐿

σ∀𝑟𝑔𝑄𝑟𝑔,𝑡
𝑈_𝑅𝐸𝑁 + σ∀𝑑𝑟𝑄𝑑𝑒𝑟,𝑡

𝐷𝐸𝑅 + σ∀𝑒𝑣𝑄𝑒𝑣,𝑡
𝐸𝑉 ≤ 𝐷𝑁𝐸%σ∀𝑙𝑄𝑙,𝑡

𝐿

DNE: Do Not Exceed Limit
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Chance constrained distribution system scheduling



Chance constrained distribution system 

scheduling: DR and PV uncertainty

• IEEE 33-bus system

• 9 solar PV units: various types of active and reactive power controllability 

settings

• Beta distribution for PV uncertainty

• Demographically diverse prosumers:

39

No. of Prosumer

Groups
Income Level No. of Occupants Child

Average demand 

response (%)

Corresponding 

Variance

3 High 1-2 No 22.55 5.28

5 High 3-5 Yes 28.49 4.72

4 Low 1-2 No 11.34 7.26

4 High 3-5 Yes 3.92 6.81

1 Medium 1-2 No 0.99 8.12



Chance constrained distribution system 

scheduling: DR uncertainty

40



Compensated 

Power 

Threshold (kW)

Proportion of 

dispatched 

active power of 

DERs (%)

Proportion of 

dispatched 

reactive power 

of DERs (%)

100 20% 23%

200 29% 33%

300 66% 76%

400 82% 95%

500 84% 97%

600 84% 97%

Compensated 

Power 

Threshold (kW)

Proportion of 

dispatched 

active power of 

DERs (%)

Proportion of 

dispatched 

reactive power 

of DERs (%)

100 15% 17%

200 20% 23%

300 24% 28%

400 31% 36%

500 36% 42%

600 41% 47%

Socially-aware aggregation, prediction, and 

uncertainty modeling
Indiscriminate aggregation, prediction, and 

uncertainty modeling

Operational scheduling: DR and PV uncertainty

𝑃 ෨𝑃𝑀,𝑡 ≤ Compensated Power from Transmission System Threshold ≥ 95%

41



Probability of 

violation (𝜀)  (%)

Proportion of 

dispatched active 

power of DERs 

(%)

Proportion of 

dispatched 

reactive power of 

DERs (%)

1 32% 37%

3 36% 42%

5 66% 76%

7 68% 79%

9 71% 82%

11 73% 84%

Probability of 

violation (𝜀)  (%)

Proportion of 

dispatched active 

power of DERs 

(%)

Proportion of 

dispatched 

reactive power of 

DERs (%)

1 16% 18%

3 19% 22%

5 24% 28%

7 27% 31%

9 30% 35%

11 31% 36%

Operational scheduling: DR and PV uncertainty

Socially-aware aggregation, prediction, 

and uncertainty modeling

Indiscriminate aggregation, prediction, and 

uncertainty modeling

𝑃 ෨𝑃𝑀,𝑡 ≤ 300 ≥ 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛%



Chance constrained distribution system 

scheduling: DR uncertainty

• IEEE 33-bus system

• 9 solar PV units: various types of active and reactive power controllability 

settings

• No PV uncertainty

• Demographically diverse prosumers:

43

No. of Prosumers

Groups
Income Level No. of Occupants Child

Average demand 

response (%)

Corresponding 

Variance

3 High 1-2 No 22.55 5.28

5 High 3-5 Yes 28.49 4.72

4 Low 1-2 No 11.34 7.26

4 High 3-5 Yes 3.92 6.81

1 Medium 1-2 No 0.99 8.12



Compensated 

Power 

Threshold (kW)

Proportion of 

dispatched 

active power of 

DERs (%)

Proportion of 

dispatched 

reactive power 

of DERs (%)

100 26% 30%

200 36% 42%

300 83% 96%

400 84% 97%

500 84% 97%

600 84% 97%

Compensated 

Power 

Threshold (kW)

Proportion of 

dispatched 

active power of 

DERs (%)

Proportion of 

dispatched 

reactive power 

of DERs (%)

100 20% 23%

200 27% 31%

300 32% 37%

400 37% 43%

500 42% 48%

600 45% 52%

Socially-aware aggregation, prediction, and 

uncertainty modeling
Indiscriminate aggregation, prediction, and 

uncertainty modeling

Operational scheduling: DR uncertainty

𝑃 ෨𝑃𝑀,𝑡 ≤ Compensated Power from Transmission System Threshold ≥ 95%



Probability of 

violation (𝜀) (%)

Proportion of 

dispatched active 

power of DERs 

(%)

Proportion of 

dispatched 

reactive power of 

DERs (%)

1 70% 81%

3 72% 83%

5 83% 96%

7 84% 97%

9 84% 97%

11 84% 97%

Probability of 

violation (𝜀)  (%)

Proportion of 

dispatched active 

power of DERs 

(%)

Proportion of 

dispatched 

reactive power of 

DERs (%)

1 27% 31%

3 29% 33%

5 32% 37%

7 34% 39%

9 35% 40%

11 36% 42%

Operational scheduling: DR uncertainty

Socially-aware aggregation, prediction, 

and uncertainty modeling

Indiscriminate aggregation, prediction, and 

uncertainty modeling

𝑃 ෨𝑃𝑀,𝑡 ≤ 300 ≥ (1 − 𝜀)%



Conclusions

• With increasing penetration level of DERs, socially-aware engineering

solutions can improve smart grid design and operations.

• Recent advancements in Artificial Intelligence empower characterizing

prosumers’ behaviors to enable design of socially-aware engineering solutions

without modeling the behavior itself.

• Advanced artificial intelligence (AI) algorithms, which account for

demographic characteristics of prosumers, are required to enable accurate

classification, aggregation, prediction, and uncertainty characterization of

prosumers and their DERs.

• Risk-aware and socially-aware operational solutions can enable efficient

utilization of DERs.
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Key Notes

• In the era of energy democracy, it is critical to consider 

the interplay of social, behavioral, technological, and 

engineering aspects, while designing smart grid 

solutions.

• This is essential for the existing system to the transition 

period and to the future grid.
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Research Questions

• How to design operational protocols to enable efficient 

use of DERs while accounting for risk?

• How can we aggregate prosumers in a way to enable 

efficient prediction and utilization of DERs?

• How will this help with the design of distribution 

markets?

• What is a good approach for risk-aware scheduling?

48



Questions?

Mojdeh Khorsand Hedman

(Mojdeh.Khorsand@asu.edu)
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