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Motivation: Network-level Optimization

Modern Power Grid: 0 —

e Distributed and Non-dispatchable
Generation

e Bidirectional power flow

e Controllable loads/Prosumers Generating Station  Step-up

e Generation Variability and
Uncertainty

B Industrial Renewables
Loads Park

e More data
Network-level

optimization to harness
e More communication the new capabilities

e More control

Residential/Commercial
customers

Key drivers for Network-level Optimization in Power Distribution Systems:
* |ncorporate non-traditional resources (DERs, responsive loads, battery storage),

* Incorporate controllable loads — smart buildings/prosumers,
* Incorporate new measurements and other sources of data,
* Increased requirement for power quality and reliability,

e Ensure resilience to disasters.




A three-phase unbalanced Distribution System
representative of a typical North American feeder

Challenges: Network-level Optimization for
Distribution Systems

T

Model Details:

1.

Open-loop model operated in radial
configuration fed from three substations
9500 single-phase nodes

107 switches leading to 96 cycles (integer
variables)

1275 single-phase loads, 354 single-phase
PVs + several utility scale DGs and storage

Added nonlinearity:

Nonlinear power flow model must
include mutual coupling;

Nonlinear load models, voltage-
dependent loads, price-responsive
consumers;

Discrete decision variables, control of

voltage regulator/capacitor banks,
switches

Heterogenous control :

Time-fragmented operation (integration
of local and network level control);
Multi-stage optimization (schedule
storage/price-responsive loads)

Model and Measurement uncertainty:

Partially-known/Incorrect physical
system models,

Noisy measurements,
Generation and load stochasticity



This Talk: Network-level Optimization for
Unbalanced Distribution Systems

My Research:

e Optimal power flow algorithms for unbalanced power distribution systems.

* Proposed methods for scalable optimal power flow algorithms for large-scale
distribution systems.

e Application of OPF model for distribution grid operational challenges.

Specific Applications:

e Conservation voltage reduction. (Method) Scalable three-phase optimal power
flow with mixed-integer constraints.

 Network topology estimation. (Method) Estimating network topology (normal and
outaged) that satisfies the measurements. Formulated as a network-level
optimization problem with discrete decision variables.

* Resilient Restoration with intentional islanding. (Method) Optimal reconfiguration
while meeting dynamic island feasibility considerations for improved resilience to
natural disasters.




Network-level Optimization: Three-Phase Optimal
Power Flow (OPF)

objective: min f(x) For ex. Conservation voltage reduction, Loss minimization, etc.
subjectto: g(x)=b Power flow equations, operating constraints
I
Branch power flow model* : My Research
l Non-convex
: OPF model
Vi Vi
&. Zy l Approximate
Iy | power flow model
S |
. Non-convex OPF
I model of reduced
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* L. Gan and S. H. Low, "Convex relaxations and linear approximation for optimal power flow in multiphase radial networks," 2014 Power Systems Computation Conference,
Wroclaw, 2014, pp. 1-9.



Network-level Optimization: Reducing Complexity
- Three-Phase Power Flow Model

Assumptions :
1. The phase voltages are assumed to approximately 120° degree apart.

Ve + VP = VF

l

V-b Vic Via

l

v a b C
> 4 NVL ~ Vl zej27t/3

A
2. The phase angle difference ((Sg.q ) between branch currents are obtained from
equivalent constant impedance model

;26 J ! 128 J

|

Grofroto Qoo
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8, is approximated in OPF. I;;is 5, .
a variable in OPF ‘f\ Iij.>




Validation of Assumptions

The power flow is solved in OpenDSS at various loading condition for
different test feeder

Qipq is the phase angle difference between node voltage and 5ipq is the
phase angle difference between branch currents

The results shows the maximum error in Qipq and 5ipq for a test feeder

Test Feeder % Load error in SZ." (degrees) error in qu(degrees)
IEEE 13 bus 75 % 1.8 1.8
IEEE 13 bus 100 % 2.1 2.2
IEEE 123 bus 75 % 0.8 0.9
IEEE 123 bus 100 % 1.13 1.3
Feeder- R3-12.47-2 75 % 0.5 0.55

Feeder- R3-12.47-2 100 % 0.9 1.05



Network-level Optimization: Three-Phase Optimal
Power Flow of Reduced Complexity

objective: min f(x)
subjectto: g(x) =b

Nonlinear Power Flow Equations

(Linear)
pp P _ pp pq (..pq pq pq _; pq
Pij — P = Z 1},{ — ZI (U cos(6ij )—xij sm(6ij ))
k:j—k qep;
pp P _ PP pq (. pq pq pq _; pq
Qj —a; = z Qjic ~ Z 1" (xff" cos(8%") + iy sin(8f;"))
k: ]—>k qeqQ;
P = P — 'R Spq qu 7P4 P4 'R qullqlqz(agqlqz)( pq2)H
i = Vi € ij ‘ij €4 tij ij Zij
qEQ; qeQ; q1,q2€9j,q1#q2
(Quadratic)
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Validation of Power Flow

The total number of variables in the proposed formulation are 15 x (n - 1), where n is
the number of nodes; the original branch-flow based models had a total of 36 x (n - 1)
variables.

Largest Error in Nonlinear Power Flow wrt. OpenDSS Solutions

Test Feeder % loading  Pflow (%) Qflow (%) Sflow (%) V(pu)
IEEE 13 Bus 100 % 0.29 2.03 0.253 0.003
IEEE 123 Bus 100 % 0.61 3.88 0.286 0.002
Feeder- R3-12.47-2 100 % 0.6 3.4 0.163 0.0002

Computational time to solve NLP model for conservation voltage reduction
objective in MATLAB using fmincon:

O IEEE 13-bus— 20 sec,
O IEEE 123-bus (267 single-phase nodes) — 4 min,
O Feeder- R3-12.47-2 (860 single-phase nodes) — 20 min.

Accurate but still not scalable for large systems
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Scalability: Approximation vs. Relaxation

* The problem is non-convex due to nonlinear equality constraints

e |de

O

2 2 2
pp pp\° _ . pop pa\* _ pp;aq
(Pij ) + (Qij ) = v; Lij and (lii ) =Lyl
as on making the model scalable: Approximation Relaxation

approximating the nonlinear
constraints to linear constraints

relaxing the nonlinear
constraints to lead to a convex
problem

Approximation - feasible Relaxation — extension of

space is approximated feasible space
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Three-Phase Optimal Power Flow (OPF)

objective: min f(x) For ex. Conservation voltage reduction, Loss minimization, etc.
subjectto: g(x) =b Power flow equations, operating constraints
Branch power flow model* I My Research
I
. Non-convex
l OPF model
Vi Vi I
&. Zy . Approximate
Iy | power flow model
Si I
- Non-convex OPF
! model of reduced
complexit
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* L. Ganand S. H. Low, "Convex relaxations and linear approximation for optimal power flow in multiphase radial networks," 2014 Power Systems Computation Conference,
Wroclaw, 2014, pp. 1-9.



Relaxation: General Model

bp b _ pp bq
By —puy = Z B = Z i (i

k:j—k qaeQj
pp p _ pp _ pq
Qj —4qu; = Z Qjx z Lij (xi'
k:j—k qeqQ;
v = v} — z 2Re [qu qu ] z ZPT +
qeQ; qaegj
pp) pp
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rq
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/

Can be relaxed to a second-order cone-
constraint: Convex problem (SOCP)
After relaxation

2 2
IJ pp - pPp pp
Vi lz] Pij + Qij

pp 199 > pq?
PP 10 > 17

The relaxation however was found to
be not exact

9)

pq\ _ .pq rq
ij ) X;; sm((Sij ))
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TRe [Zggjml?jmz(46iqjlq2)(zlqu2)11]

q1,q2€9j,q1%q2

PP ;99
=l L

plpp

Nonlinear equations
in OPF model

Iterative approach to reach the feasible
solution over multiple iterations of the

SOCP relaxed problem

Additional constraint is defined to
reduce feasibility gap

P PP _ Ppp pp?

€1 Vi ij ij ij

2
e, = IPP « [99 _ P4
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Relaxation - Understanding Feasibility Gap

Single-phase radial distribution feeder

A
|

| = p? + ¢? * The power flow will have solution on the
/ surface of the cone.

* Convex Relaxation - The nonlinear
equality constraints are converted into
inequality constraints thus expanding the
feasible space to the interior of the cone:

(Bo) + (a2 < wrur

e Feasibility gap is defined as

error = v;

2 2
ppp _ ppP pp
i lij — B Qij

\/

~

e For minimization problem (for ex. loss minimization) the solution for the relaxed model is
known to lie at the surface of the cone under certain conditions that are usually satisfied by the
single-phase network.

e Thus, the solution of relaxed problem is exact as it lies on the surface of the cone.

S. H. Low, “Convex relaxation of optimal power flow Part I: Formulations and equivalence,” IEEE Transactions on Control of Network Systems,
vol. 1, no. 1, pp. 15-27, March 2014.



Relaxation - Understanding Feasibility Gap

Single-phase radial distribution feeder

[ =p?+q°

~\ infeasible solution
voltage constraint

For maximization problem (for ex.
maximum PV hosting), the relaxed
solution was found to be inexact.

In this case, the relaxed problem can
have optimal solution inside the cone.

Here, for the relaxed problem the
solution obtained is c¢,- which is optimal
for SOCP but infeasible for actual
problem leading to feasibility gap.

2 2
_ .,DPP _ pPP* _ APD
error = v; ll-j P Qij

We enforce a linear inequality

constraint to reduce the feasibility
gap over successive iterations of the

relaxed problem*.

*Rahul Ranjan Jha and Anamika Dubey, “Exact Distribution Optimal Power Flow (D-OPF) Model using Convex Iteration Technique,” accepted to appear at

2019 IEEE PES General Meeting.
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Approach: Iterative Second-order Cone Programming
for Three-phase OPF

An iterative approach that solves
multiple iterations of SOCP relaxed
problems to drive the solution to
feasible space.

Feasibility gap termed as error is
defined as

e, = vf(k)lg.p(k) _ (Piz]?p(k)) (Q'mo(k))

Ky _ pp(k) . ,qq(k) pq(k)\?
ez()_lij * 1 _(li' )

Added linear inequality constraints
that minimizes the feasibility gap
in successive SOCP iterations.

Start
tol =10 k=1

Solve linearized optimal power flow
fnnISX) =0,
X" = Xiin

\

2(k )
p(k)ypp(k) pp
) (vI EU ( P
error"® = max

(Ipq) 20k gpp{k)gqq{k)
ij

<)

k
Is error <tol ?

No

Solve SOCP (with added
directional constraint) for Ax

k =k+1
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Results: Iterative SOCP for Three-phase Power

Feasibility Gap: error = max <(vilij —(P5 + Qizj)),<

IEEE-13 bus test system

0.1 |

0.05 |

maximum error

Il Il
5 10

Il
15

Il
20

0.5

Distribution System

- (7))

IEEE-123 bus test system

0.4

0.3 |

0.2 |

maximum error

0.1 |

25
iteration number
Test feeder Loading Computation Computation
condition time (NLP) time (SOCP)
IEEE 13 bus minimum 17.95 sec 4.00 sec
IEEE 13 bus maximum 13.51 sec ~20.0 sec
(10 iterations)
IEEE 123 bus minimum ~2 min 30.00 sec
(8 iteration)
IEEE 123 bus maximum ~4 min 40.00 sec

(10 iteration)

1 1 L L
10 15 20 25 30

iteration number

The computation time
required for each iteration to
solve the IEEE-123 node
system using CVX is
approximately 4.00 sec
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Three-Phase Optimal Power Flow (OPF)

objective: min f(x) For ex. Conservation voltage reduction, Loss minimization, etc.
subject to: gx)=0>b Power flow equations, operating constraints
Branch power flow model* l My Research
I
. Non-convex
I OPF model
Vi Vi I
&. Zy . Approximate
Iy I power flow model
S I
. Non-convex OPF
! model of reduced
complexit
Uj =7 + ZijlijZin — ZUS{}I — SUZ{-]I ! P y
dl(lg (Sl] — Zl]IUIlI}I - Sj = dlag (S]k) !
) - I
v Sij Vi1ivir? : r !
u — [I] [I] | Approximation Relaxation
Sij  lij] ijl Uij
: y y
(v, Sij] I lterative lterative
l . [
Sg L - Rank -1 PSD matrix I Linearized OPF Convex OPF

I
* L. Gan and S. H. Low, "Convex relaxations and linear approximation for optimal power flow in multiphase radial networks," 2014 Power Systems Computation Conference,
Wroclaw, 2014, pp. 1-9.



Approximation: General Model

Nonlinear program general form

min  f(x)
st gx)=b»b

Penalty Successive Linear Programming:
min  f(x*)+VfAx+w X;p; + 1
st gi(x*) + VgiAx — by = p; —
—sk < Ax < s*
[<x*+Ax<u
pi=0, n;=0

Nonlinear equations in OPF model — < Nonlinear quadratic equations
, , e Linearized around optimal
(p.‘?p) n (QPP) — P PP | operating point obtained from
Lj Lj L . .
a: D144 linearized three-phase OPF model
(lif ) =L L e Solves within 3-4 iterations of

linear programming
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Approximation: Three-phase OPF and Flowchart

Start
tol =10 k=1

A4

Solve linearized optimal power flow
fiin(x) = 0, X = Xiin

Linearize nonlinear power flow

equation at X"

Solve penalty sequential linear
programming (PSLP) model for Ax

k
Is error <tol ?

fesip(Ax) =0

k+1 k

N

y
k k-1 k
error = fpsip (X ) - fpsip (X)

No
Is erroﬂy
Yes
sk=2 s ‘=512
k = k+1

Solves within 3-4 iterations of linear programming

20



Results: Approximate Optimal Power Flow Model

e Optimization for CVR objective (Conservation voltage reduction)

e Solved for three-phase example test feeders: IEEE 13 bus, IEEE 123 bus
(267 single-phase nodes), Feeder- R3-12.47-2 (860 single-phase nodes)

* Validated against NLP solver - KNITRO

Test feeder Loading NLP PSLP Computation Computation
condition (pu) (pu) time (NLP) time (PSLP)
IEEE 13 bus minimum 0.5376 0.5376 17.95 sec 1.75 sec
IEEE 13 bus maximum 2.054 2.045 13.51 sec 1.46 sec
IEEE 123 bus minimum 0.58 0.55 ~2-min 10.97 sec
IEEE 123 bus maximum 3.43 3.28 ~2-min 11.94 sec
Feeder- R3-12.47-2  minimum 0.653 0.679 ~15-min 15.66 sec
Feeder- R3-12.47-2  maximum 4.531 4.461 ~15-min 16.96 sec

21



Applications

Application 1 - Conservation voltage reduction

Method: Scalable three-phase optimal power flow with mixed-integer
constraints.

Application 2 - Topology estimation: during normal and outage condition

Method: Estimation for topology that satisfies power flow measurements.
Formulated as a network-level optimization problem.

Application 3 - Resilient Restoration with intentional islanding

Method: Optimal reconfiguration while meeting dynamic island feasibility
considerations for improved resilience to natural disasters.

22



Application 1: Conservation Voltage Reduction/Volt-
VAR Optimization

Coordinated control grid’s legacy devices (voltage regulator, capacitor banks) and new

devices (smart inverters) to reduce feeder voltages and thereby demand from feeder’s
voltage-dependent loads.

Without Volt-VAR Optimization (VVO) With Volt-VAR Optimization (VVO)

1.05

voltage (pu)

0.95

1.05 i
voltage (pu) \

distance

distance



Application 1: Volt-VAR Optimization

Approach - Using network-level optimization to coordinate legacy devices and smart
inverters and meet objectives of conservation voltage reduction.

e Mathematically problem is formulated as mixed integer nonlinear program (MINLP)

 Mixed integer due to discrete and continuous variables and nonlinear due to three-
phase nonlinear power flow.

Level 1: Mixed integer linear programming (MILP)
Objective function: min Y,eq. PP (t)

Subject to: linear power flow, voltage regulator control, capacitor bank control,
voltage limits, and reactive power limits on DGs

Control variables: Regulator tap (4, (t)) , capacitor (u;(t)) and DG reactive power (Qpg)
Fix the status of Regulator tap (A4,(t)) , capacitor switch (u;(t))

Level 2: Nonlinear programming (NLP)
Objective function: min Y,e . PP (t)
Subject to: non-linear power flow, voltage limits, and reactive power limits on DGs
Control variables: reactive power from DG (Qp;)

Rahul Ranjan Jha, Anamika Dubey, Chen-Ching Liu, Kevin, P. Schneider, “Bi-Level Volt-VAR Optimization to Coordinate Smart
Inverters with VVoltage Control Devices,” accepted IEEE Transactions on Power Systems, Jan. 2019
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Application 1: Volt-VAR Optimization: Results

33 29 250
30 5 111 110 112 113 114

T e g, 50 B o e—e 4 IEEE-123 bus system

260 Foug 2 4 44 10 10 451
2 VR3Y .o 44 43 65 24 11037 5

10%” 102 10Q . . .
24 ‘ ot 108" o , e Total number of single-phase nodes in this
¢ DGR .~ iy unbalanced system = 267
B (T Tk y Desg 6 ;
160
60 D 74
o 57, VR4_\ 7 .
LR 534 ooy 7 T e Control Devices: 4 Voltage regulators, 4
9 ) 77’8 . . L
w2 L g RS oy capacitor banks, and 9 distributed
/ DG2 94 103 102 84
g a0 ] 1o 304 . 9 10;C S0l 6eE] 8 generators
S 15 950—4 85 87 804 Blinc
2:» 6 16 s 9
O Nodes with DG [ Nodes with Capacitor
3 T T T T T T T 300

== without CvF control
—with proposed approach for CWR
=+ Resuction in demand due to CvR

Without CVR control
O VR and capacitor banks are working
autonomously and PVs operating at
unity power factor

With CVR Control
O Reduction in power consumption
from substation
O Higher reduction in power demand :
o ) . 2 4 6 8 10 12 14 16 18 20 22 24
at minimum loading condition Time (Hours)

250

P
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200

g
T

150

N
o
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=
I
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o
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Application 1: Volt-VAR Optimization: Results

PNNL-329 bus system

e Total number of single-phase nodes
in this unbalanced system = 860

* Control Devices: 1 Voltage regulator,
4 capacitor banks, and 9 distributed
generators

<
(&)
0 Node with Capacitor iy

O Node with DG

-
Q

500

—with proposed approach for CVR ' ' '
= =without CVR control Y

5

'l

A

-v—reduction in demand due to CVR

[0}

400

300

200

Total three-phase
substation Power Demand (MW)

7100

Reduction in Active power Demand (kW)

|
2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)
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Application 2: Topology Estimation - Problem
Statement

* To estimate the operational topology given planning model
* |dentify topology : normal & outaged
* Qutaged topology : not fault location

e %3
4
e
2 |
Planning model
o)

Tree-1 ¢ e

Py

Sub-tree

Anandini Gandluru, Shiva Poudel, and Anamika Dubey, “Joint Estimation of Operational Topology and Outages for Unbalanced Power Distribution
Systems,” accepted for publication in IEEE Transactions on Power Systems on Aug. 2019. 27



Application 2: Topology Estimation

Approach - Use network-level
optimization to estimate the switch
statuses using erroneous measurements.

* Formulated as an estimation problem

e Measurements used flow, load, and
smart meter ping measurements

Ilneflo“
PQ—’ P'ZU
Feeder-1 _v_o_ Jc o0 i
1 (&~ "?
pL; @
Load
Sub-

Transmission
bus

Feeder-3

po=s======= : :' """""
S5~ syt N S5 =S
Minimize o
4 0.9 11 4 O
@€{a,b,c} \ JEI Lj 1 : ijEB ij
L ---------- JI ‘ ----------

v" Errorin load variables and load measurements
v" Errorin flow variable and flow measurements.

Power balance constraints
Radial topology
Error bounds on Smart Meter ping measurements

Measurement Error Model
e Errors in continuous measurements (flow and load):

AN ~
(P ) N(o o <,)) and e(Q ) N(o aQ:,;)
e Errorsin Smart Meter Ping Measurements (discrete):
e(J;) = (J;
=P(G-y =1)

e Sum of Errors in Smart Meter Ping Measurements

— y;)~Bernoulli(q)

Open ==~~~ & = 0|Closed === ~~- §; =1

Energized
Load section

Outaged _
Load section i =0

Capacitor OFF yéf} =(Q |Capacitor ON ygj. =1

=1 .
! Smart meter (2) ¥;

. © 0 _ o Forecasted loads
Flow variables B Q;; |Load variables p;; q;

(7 pP AP
Flow meter (_7) 7 Q;

Al A
pLj qu

(Gaussian Approximation)
Snp"’B(np; CI) - Snp"’N(.ue' Te)

Ue = Npq; O = ’an(l_Q)
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Application 2: Topology Estimation - Results

. O 40 sectionalizing switches

15 152 2
.
18 L) .
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2

Solve power flow
(OpenDSS)
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@ Regulator ®—@ Distribution line ®--® Sectionali zing switch Feeder
229 @260 /
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(MATLAB)

Calculate Metrics

Get real-time measurements
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Contribution factor (C ¢ )
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Application 2: Topology Estimation - Results

%MDR, %MMS and %MMO for tested topologies with outages

% % error in load measurements
erro? %MDR %MMS %MMO
MY 49 [ 10% | 20% | 1% | 10% | 20% | 1% | 10% | 20%
0 0 0 1.03 0 0 0.04 0 0 0.07
2 053 | 280 | 7.10 [ 0.019 | 0.1 0.35 | 0.041 | 0.32 | 0.73
5 0.91 4.35 7.23 | 0.041 | 017 | 0.37 | 0.067 | 0.40 | 0.78
I 1 switch pair [l 2 switch pairs [Jlll 3 switch pairs |
>, 0.025 |
< &
§ % 0.02 -
= =
S 0015+
33
“ 3 001
R 7
=

Most of the misdetections are only due to one

10
% Error in Load Measurements

switch pair wrongly detected

20

MDR - Missed Detection Ratio (MDR)
MMS - Mean Missed Switches (MMS)

MMO - Mean Missed Outages (MMO)

0.03 T T T T T 14

Il % scctional load misdetection frequency
actual sectional load frequency

ot

]

o

Lh
T

Sectional Load Frequency

50 100 150 200 250 300 350
Sectional Loads (kW)

Frequently misdetected load sections: frequently repeated and
supplied by same upstream meter
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Application 3: Resilient Restoration (Problem)

Service Restoration

. Transmission and distribution network
remain intact

*  Single fault due to component failure

*  No stochastic feature involved in general
analysis

DERs and backup feeders can be utilized
for supplying the outaged loads

*  Quickly repair and restore

Restoration during Extreme Events

e Distribution feeder disconnected from
main grid

e Distribution system itself under stress

e  Restore critical loads as soon as possible

*  DERs can be utilized for supplying the CLs

e Combinatorial problem — large number of
options to restore the network using all
available resources

A Fault @ Disributzd Ensrzy
“

IR P

B Out-cfsericzame

DER. island

Resmums ot Teswitch 8

S=chonalizine

switch

Power distribution system restoration using backup feeders and available DER. The out-of-service
area is restored with suitable switching scheme after the fault has been isolated

350

a3 111 110 112 113 114
31 2
109 107
2 106 104 451

27,
WT 4 -
y 4 6 10 450

Earthquake
Flood 0

Tsunami
Hurricane

Tornado 1
2
- 149
Main 150
grid P 5
Q 3 5 6

16 L7195

4

-—-Tie-Switches

Distribution system after a natural disaster

O Critical Loads " Fault
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Application 3: Resilient Restoration - Approach

Approach - Use network-level
optimization to maximize the total
load restored using all available
resources: feeders, DGs (intentional
islanding), smart switches, legacy
voltage control devices.
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Shiva Poudel, and Anamika Dubey, “Critical Load Restoration Using Distributed Energy Resources for Resilient Power Distribution System,” IEEE Transactions on

Power Systems ( Volume: 34, Issue: 1, Jan. 2019 )
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Application 3: Resilient R
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Application 3: Resilient Restoration - Results
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Demonstration using Grid APPS-D Platform

e GridAPPS-D - an open-source, standards based ADMS application development platform

O Developed for the U.S. Department of Energy’s Advanced Distribution Management System
(ADMS) Program by the Grid Modernization Laboratory Consortium project GM0063

O Provides a method for developers to run their new applications on a real-time simulator with
extensive modeling and tool support.
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R. Melton, K. P. Schneider, E. Lightner, T. McDermott, P. Sharma, Y.C. Zhang, F. Ding, S. Vadari, R. Podmore, A. Dubey, R. Weis, and E. Stephan,
“Leveraging Standards to Create an Open Platform for the Development of Advanced Distribution Applications,” IEEE Access, vol. 6, pp. 37361-37370,
June, 2018 35



Future Research Directions

Challenges not addressed in this work

Large-scale engineered systems with time and space fragmented control
and an increased level of variability and uncertainty from DERs

e Challenging to solve operational problem for a large-scale
optimization problem (mostly non-convex and with mixed-integer) in
a stochastic setting for a three-phase unbalanced system.

Poor situational awareness due to limited measurement and sensing devices
and inaccurate or unknown physical system planning and operational model
along with noisy and compromised heterogeneous measurements:

e Simultaneously handling measurement and model uncertainty and
noisy and compromised measurements.
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Future Research Directions

e For optimal distribution system operations, mostly model-based methods
have also emerged in past few years.

Why not simply learn optimal decision from measurements?

Completely model-free methods have also been proposed for estimation,
control, and optimization.

* However, these do not generalize well.

Future Research Directions

A combination of data-driven and physics-based model that can learn
probabilistic relationships within observed and unobserved variables using
measurement set and physics-based models.
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Further Information

e \Website: https://eecs.wsu.edu/~adubey/index.html

e Research Projects:
https://eecs.wsu.edu/~adubey/research.html

e Publications: https://eecs.wsu.edu/~adubey/papers.html

Anamika Dubey
EECS, Washington State University
anamika.dubey@wsu.edu
509-335-1865
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Device Models

Voltage regulator

A 32-step voltage regulator:

VP =vP=a"Vl, If,=aPl}
al = Z?il b;x; A,=a;

D _ p p _ (P>
Vi = Apv; (v =V )

Ap = X3, bPx; (x5 €{0,1})
] 1x] = 1 (Voltage Regulator tap position)
where, b; € {0.9,0.92, ......... 1.1}

Load model

- Voltage dependent load model is derived
using the CVR factor

% reduction of P/Q

% voltage reduction
p

Pi
p.Y =pd +CVR, —°( P —Vp)

CVR =

b
4] = qip + CVRg > (v} — V)

CVR factor can be obtained using the ZIP model

Capacitor banks

» Reactive power support is constant

Q; = u;v;Q¢

where, u; € {0,1}, status of capacitor
bank at node i

DERs/Smart Inverters

e Reactive power support depends on rating
of DGs

Mathematically:
Si = 1.15 % Py 14teq

Q= S/ — P

Q; is the control variable for the optimization

taking,
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Power Flow with Switch Model

Linear real and reactive power flow function of switch status

Z 6ijPij = sjP; + Z 6jcPjc z 6ijQij = s;Qu; + Z 6jcQjc
i->jEE (joc)EE i-j€EE (joc)EE
i#c i#c

8i;(U; — Uj) = 2(7;Pyj + %7, Qi)

Switch open or close status decides which radial configuration to operate
O Power flow in open switch =0
O Voltage drop equations along the closed switch only

Tree 1 Tree 2

Pg7 =Q¢7 =0

U; =F (Uy, Paz,Qu7,727,X57)

Closed

8
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Integration with PNNL’s GridAPPS-D Platform:
Restoration of Power Distribution Network
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