Electricity network design and operation in an era of solar and storage

Duncan Callaway

Energy & Resources Group University of California, Berkeley

also: EECS, Lawrence Berkeley National Lab

Key Contributors: Dan Arnold, Jonathan Lee, Mingxi Liu.

PSERC Webinar January 22, 2019

Research overview: Energy optimization, control and analysis

"Energy analysis":

- What are the benefits to strengthening international electricity transfer in the continent of Africa?
- What are the engineering and economic impacts of large scale PV penetration in distribution systems?

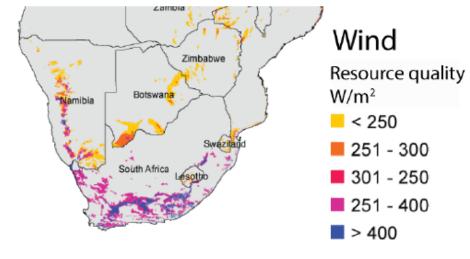


Figure: Wu, Deshmukh et al, PNAS (2017)

Control and optimization:

- Seeking renewables integration solutions; frequency and voltage regulation
- We develop and apply a variety of optimization and control tools
- Range of partnerships with demand response integrators, EV manufacturers, solar PV integrators.

Networks face emerging, competing pressures

- New loads, spatially diverse generation → network value increases
- New small-scale sources of generation, storage → reduces the need for the network

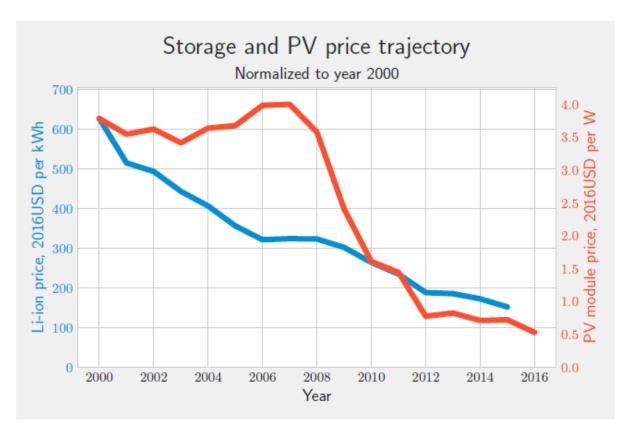
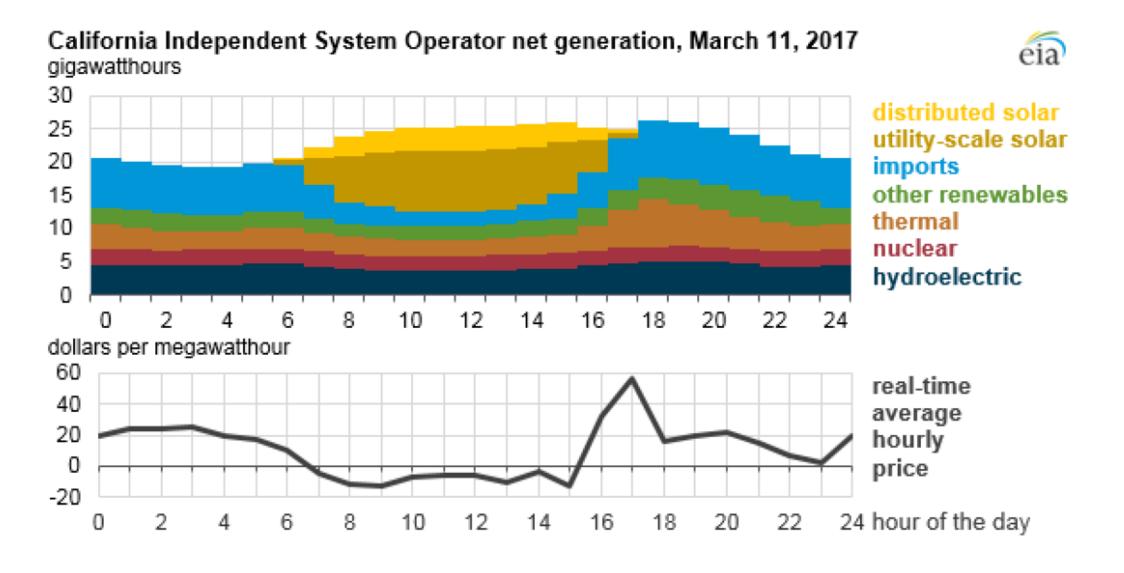
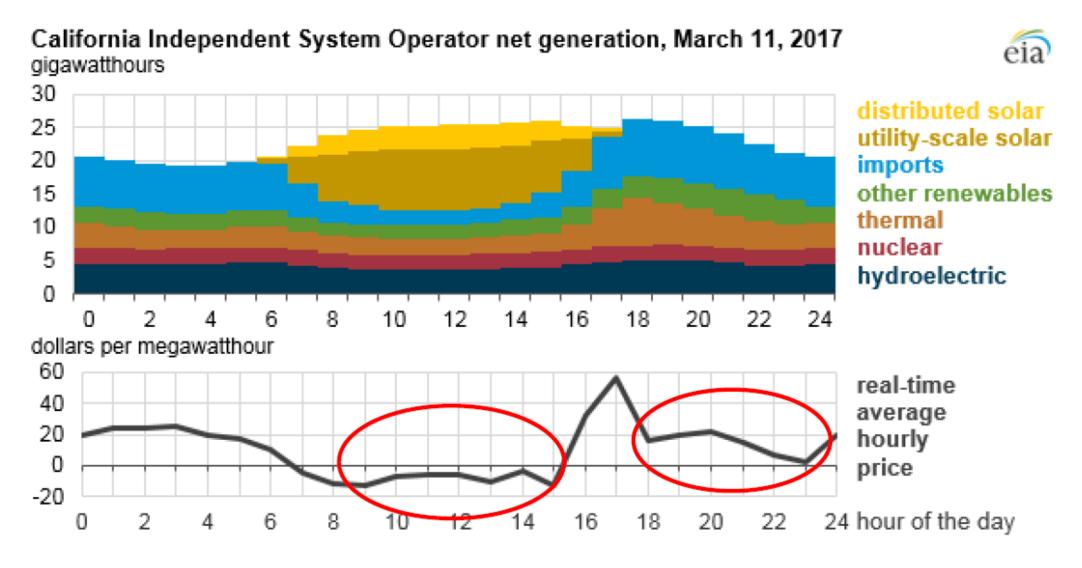


Figure: source: LBNL Tracking the Sun X (2017); Kittner *et al*, Nature Energy (2017)

Example: Solar meets EV charging...opportunity and challenge



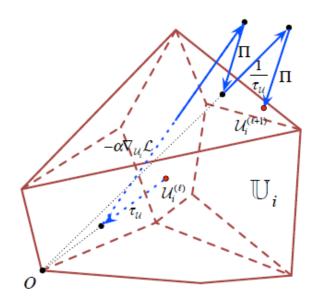
Example: Solar meets EV charging...opportunity and challenge



Low price hours for charging EVs, other electrified loads

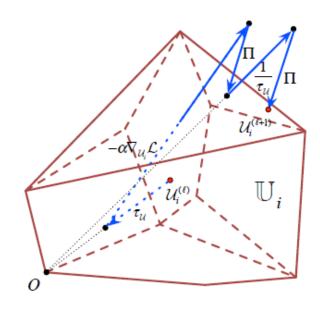
Talk outline

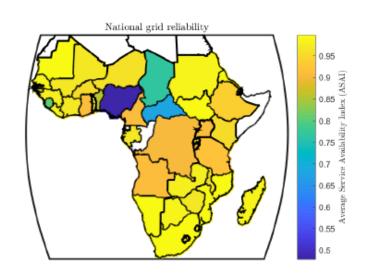
- Increase network utilization by coordinating distributed energy resources.
 - Decentralized control desirable, but...
 - Problem is strongly coupled
 - We modify the primal-dual subgradient method to handle this
 - Case study: EV charging
- Decentralized infrastructure for electrification
 - Will storage replace wires reliably?
 - Finding: At forecasted costs, decentralized systems need to become part of the central planning process.
 - Finding: Much of sub-Saharan Africa could see "reliability costs" of \$USD 0.03 per "9" of reliability, per kWh served



Talk outline

- Increase network utilization by coordinating distributed energy resources.
 - Decentralized control desirable, but...
 - Problem is strongly coupled
 - We modify the primal-dual subgradient method to handle this
 - Case study: EV charging
- Decentralized infrastructure for electrification
 - Will storage replace wires reliably?
 - Finding: At forecasted costs, decentralized systems need to become part of the central planning process.
 - Finding: Much of sub-Saharan Africa could see "reliability costs" of \$USD 0.03 per "9" of reliability, per kWh served





Part 1: Improving network utilization with growth in distributed energy resources

Distribution network aware battery (EV) charging

- Objective: Minimize some combination of:
 - Charging cost (wholesale or retail)
 - Ancillary services revenue
 - Utilization of infrastructure (e.g. "valley filling")
 - Impact of charging on battery state of health

Constraints

- Local: Max / min charge rates, max / min state of charge
- Global: Network thermal and voltage limits

If this is for an aggregation of resources, actions of one resource impact others in both the objective and constraints

Generic Charging Control – Mathematical Formulation

Battery charging control

$$\arg\min_{\mathcal{U}} \ \mathcal{F}(\mathcal{U}) \Leftarrow \text{Convex, Coupled \& Non-separable}$$
 s.t. $\mathcal{U}_i \in \mathbb{U}_i := \{\mathcal{U}_i | \mathbf{0} \leq \mathcal{U}_i \leq \mathbf{1}, x_i(k) + \mathcal{B}_{i,l}\mathcal{U}_i = 0\} \Leftarrow \text{Local constraint}$
$$\mathcal{Y}_{dk} + \sum_{i=1}^n \mathcal{D}_i \mathcal{U}_i \geq \underline{\nu}^2 V_0 \Leftarrow \text{Linearly coupled inequality constraint}$$

 U_i : Charging schedule of the *i*th device (0 to 1 charging rate)

 $\mathcal{Y}_{dk} + \sum_{i=1}^{n} \mathcal{D}_{i} \mathcal{U}_{i}$: All bus voltage magnitudes during charging period

"Valley filling" Charging Control – Mathematical Formulation

Battery charging control

$$\arg\min_{\mathcal{U}} \mathcal{F}(\mathcal{U}) = \frac{1}{2} \left\| P_b + \sum_{i=1}^n \overline{P}_i \mathcal{U}_i \right\|_2^2 + \frac{\rho}{2} \left\| \mathcal{U} \right\|_2^2 \Leftarrow \text{Convex, Coupled \& Non-separable}$$
 s.t. $\mathcal{U}_i \in \mathbb{U}_i := \{\mathcal{U}_i | \mathbf{0} \leq \mathcal{U}_i \leq \mathbf{1}, x_i(k) + \mathcal{B}_{i,l} \mathcal{U}_i = 0\} \Leftarrow \text{Local constraint}$
$$\mathcal{Y}_{dk} + \sum_{i=1}^n \mathcal{D}_i \mathcal{U}_i \geq \underline{\nu}^2 V_0 \Leftarrow \text{Linearly coupled inequality constraint}$$

 U_i : Charging schedule of the *i*th device (0 to 1 charging rate)

 $\mathcal{Y}_{dk} + \sum_{i=1}^{n} \mathcal{D}_{i}\mathcal{U}_{i}$: All bus voltage magnitudes during charging period

P_b: Background load profile

Motivation for decentralized control and our aim

Centralized optimization...

- Doesn't scale well
- Requires sharing of information (conflicts with EV charging standards) and private utility functions (privacy issues)

Decentralized/distributed algorithms ...

- Must handle coupled/non-sep objective & coupled inequalities
- Introduce regularization errors or require many communication iterations (Koshal et al SIAM, 2011; Zhang et al TPS 2017).

In this work we set out to develop an algorithm that ...

- Is free of convergence error and works with relatively few communication iterations
- Does not require sharing (i) state of charge or (ii) any information with neighbors

Setup: Dual problem and projections

Lagrangian

$$\mathcal{L}(\mathcal{U}, \lambda) = \frac{1}{2} \left\| P_b + \sum_{i=1}^n \overline{P}_i \mathcal{U}_i \right\|_2^2 + \frac{\rho}{2} \left\| \mathcal{U} \right\|_2^2 + \lambda^{\mathsf{T}} \left(\mathcal{Y}_b - \sum_{i=1}^n \mathcal{D}_i \mathcal{U}_i \right)$$

 Projection methods can then be used to manage the local constraints with the following equilibrium condition:

$$\mathcal{U}^* = \Pi_{\mathbb{U}} \left(\mathcal{U}^* - \nabla_{\mathcal{U}} \mathcal{L}(\mathcal{U}^*, \lambda^*) \right)$$
$$\lambda^* = \Pi_{\mathbb{R}^{hK}_+} \left(\lambda^* + \nabla_{\lambda} \mathcal{L}(\mathcal{U}^*, \lambda^*) \right)$$

Finding the projected equilibrium

• The primal-dual subgradient algorithm is simple:

$$\mathcal{U}^{\ell+1} = \Pi_{\mathbb{U}} \left(\mathcal{U}^{\ell} - \alpha_{\ell} \nabla_{\mathcal{U}} \mathcal{L}(\mathcal{U}^{\ell}, \lambda^{\ell}) \right)$$
$$\lambda^{\ell+1} = \Pi_{\mathbb{R}_{+}^{hK}} \left(\lambda^{\ell} + \beta_{\ell} \nabla_{\lambda} \mathcal{L}(\mathcal{U}^{\ell}, \lambda^{\ell}) \right)$$

...but won't converge if you decentralize the control variable projection step.

- Koshal et al's solution is regularization: Convex penalties on the size of the decision variables
 - Regularization also known as a "shrinkage" methods because it drives decision variables toward zero.
 - Side effect: you're no longer solving the problem you set out to.

Could we shrink by other means and avoid the side effect?

What if:

$$\mathcal{U}_{i}^{(\ell+1)} = \Pi_{\mathbb{U}_{i}} \left(\tau_{\mathcal{U}} \mathcal{U}_{i}^{(\ell)} - \alpha_{(i,\ell)} \nabla_{\mathcal{U}_{i}} \mathcal{L}(\mathcal{U}^{(\ell)}, \lambda^{(\ell)}) \right)$$
$$\lambda^{(\ell+1)} = \Pi_{\mathbb{D}} \left(\tau_{\lambda} \lambda^{(\ell)} + \beta_{\ell} \nabla_{\lambda} \mathcal{L}(\mathcal{U}^{(\ell)}, \lambda^{(\ell)}) \right)$$

...where $0 < \tau_{\mathcal{U}} < 1$ and $0 < \tau_{\lambda} < 1$?

- This shrinks the decision variables but also moves us away from the desired solution.
- We could re-expand, but this might cause us to violate constraints again.
 - → Need to re-project
- So, we tried an algorithm that iteratively updates:

$$\mathcal{U}_{i}^{(\ell+1)} = \Pi_{\mathbb{U}_{i}} \left(\frac{1}{\tau_{\mathcal{U}}} \Pi_{\mathbb{U}_{i}} \left(\tau_{\mathcal{U}} \mathcal{U}_{i}^{(\ell)} - \alpha_{(i,\ell)} \nabla_{\mathcal{U}_{i}} \mathcal{L}(\mathcal{U}^{(\ell)}, \lambda^{(\ell)}) \right) \right)$$
$$\lambda^{(\ell+1)} = \Pi_{\mathbb{D}} \left(\frac{1}{\tau_{\lambda}} \Pi_{\mathbb{D}} \left(\tau_{\lambda} \lambda^{(\ell)} + \beta_{\ell} \nabla_{\lambda} \mathcal{L}(\mathcal{U}^{(\ell)}, \lambda^{(\ell)}) \right) \right)$$

"Shrunken Primal Dual Subgradient," or SPDS - Visualization

$$\mathcal{U}_{i}^{(\ell+1)} = \prod_{\mathbb{U}_{i}} \left(\frac{1}{\tau_{\mathcal{U}}} \prod_{\mathbb{U}_{i}} \left(\tau_{\mathcal{U}} \mathcal{U}_{i}^{(\ell)} - \alpha_{(i,\ell)} \nabla_{\mathcal{U}_{i}} \mathcal{L}(\mathcal{U}^{(\ell)}, \lambda^{(\ell)}) \right) \right)$$

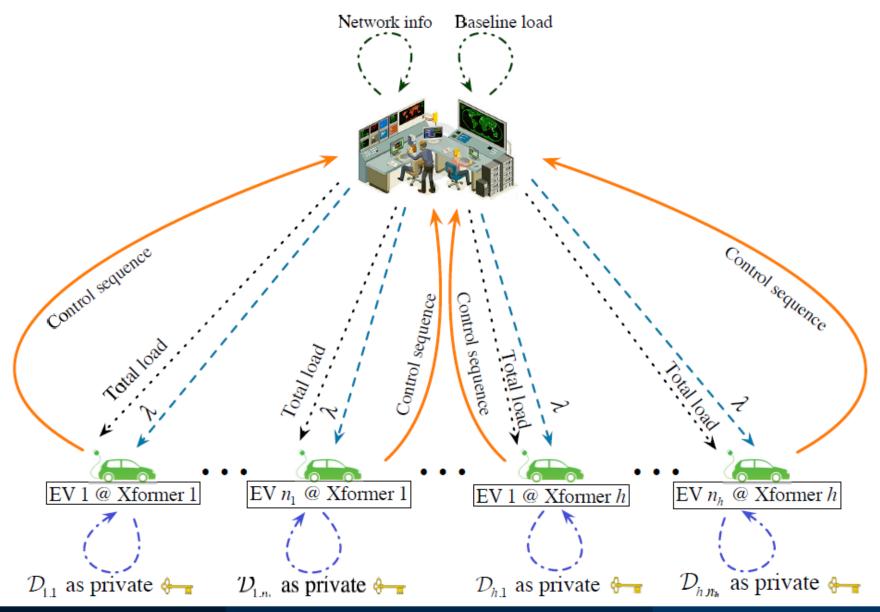
$$\lambda^{(\ell+1)} = \prod_{\mathbb{D}} \left(\frac{1}{\tau_{\lambda}} \prod_{\mathbb{D}} \left(\tau_{\lambda} \lambda^{(\ell)} + \beta_{\ell} \nabla_{\lambda} \mathcal{L}(\mathcal{U}^{(\ell)}, \lambda^{(\ell)}) \right) \right)$$

$$\prod_{\mathbf{U}_{i}^{(\ell+1)}} \prod_{\mathbf{U}_{i}^{(\ell+1)}} \prod_{\mathbf{U}_{i}^{(\ell+1)}}$$

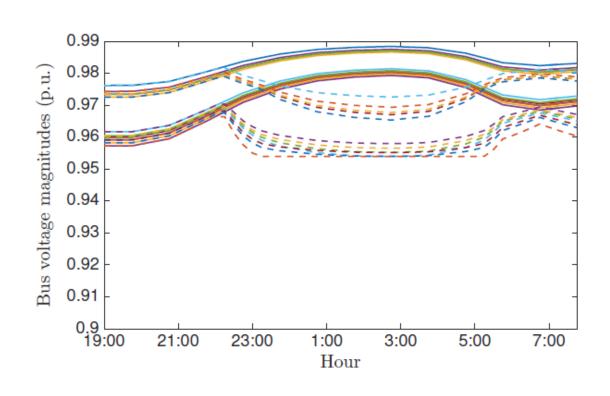
Notes on SPDS proof

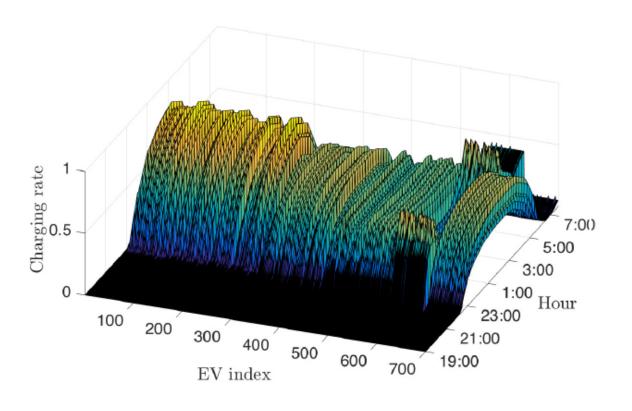
- SPDS provably convergences to the global optimum (Liu et al. TCST 201X)
- Proof works by guaranteeing distance to optimal point decreases monotonically.
- Places conditions on the relationship between parameters for shrinkage $(\tau_{\mathcal{U}}, \tau_{\lambda})$ and step sizes (α, β)
- Future work:
 - Manual parameter tuning to reduce convergence time is tedious → results bounding iterations to convergence?
 - Another area for future work non-constant step sizes.

A Secured Charging Control Framework

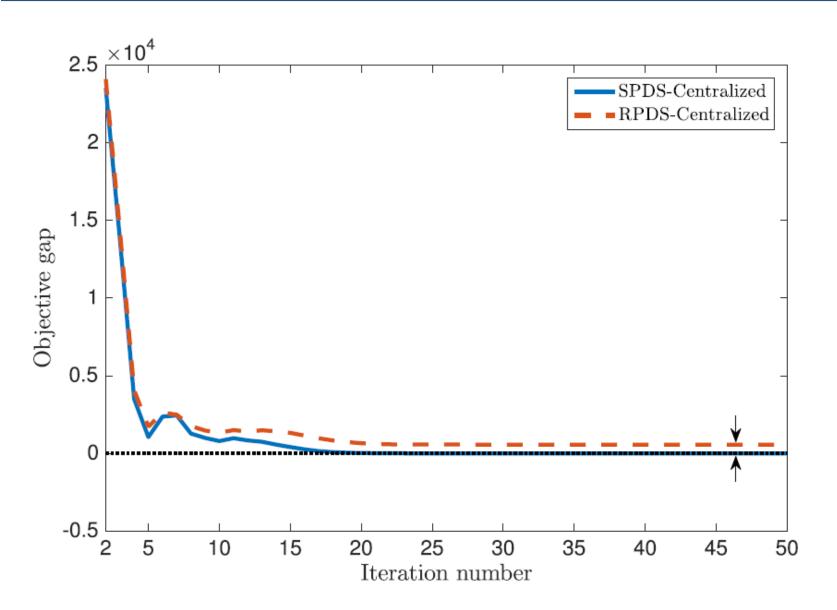


Example: Valley-Filling on IEEE 13 Node feeder





Significance



- Relatively fast convergence
- Complies w EV charging standards (ISO/IEC 15118 and SAE 2847): battery SOC information local
- Significant computations are projections, generally fast to solve.

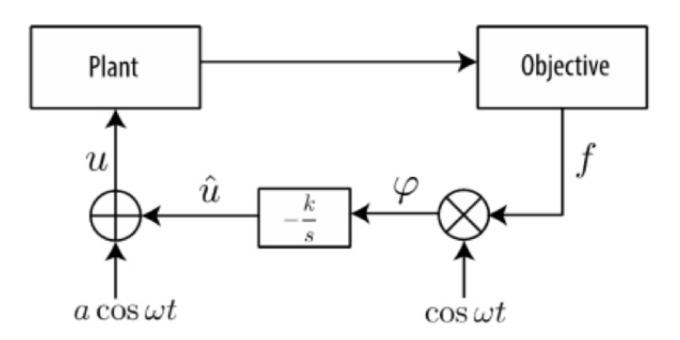
Some extensions, next steps and caveats)

- Charging decisions made locally → each agent can solve its own optimization problem.
 - Local objectives could be time to charge, battery degradation
- Secondary transformer temperature dynamics can also be incorporated into the problem (Liu et al PSCC 2018)
- Next step microgrid developer New Sun Road partnering on DOE proposal to explore this approach

Caveat: Requires network model and all injections and extractions

Can we do network optimization with less information?

- Extremum seeking control (ES)
- Basic form: modulation signal (probing signal) is injected into plant dynamics: $u = \hat{u} + a\cos\omega t$
 - Each controller uses different frequency



⇒ Scheme is a form of gradient search; identifies local extremum to objective.

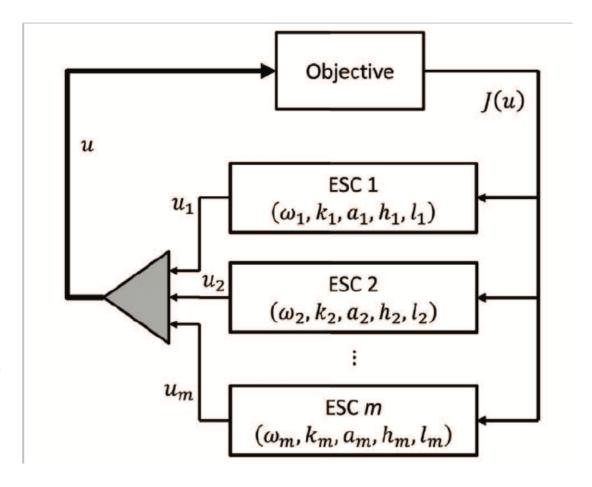
ES applied to network optimization: Basic example Arnold *et al*, TPWRS (2016)

Control: Use PV & battery inverters and EV chargers to inject real and reactive power at different nodes on a feeder

Sensors:

- Measure real power at feeder head
- Measure voltage at points of concern

Example device-level objective: Minimize feeder head real power (captures resistive losses and voltage dependency of loads) plus voltage penalty terms



Some issues you might be thinking about

First the downside:

- If you have state constraints, they need to appear in penalty functions
- Filter parameters, probing frequency and integrator gain all need to be tuned.
- Problem needs to be convex for global optimality

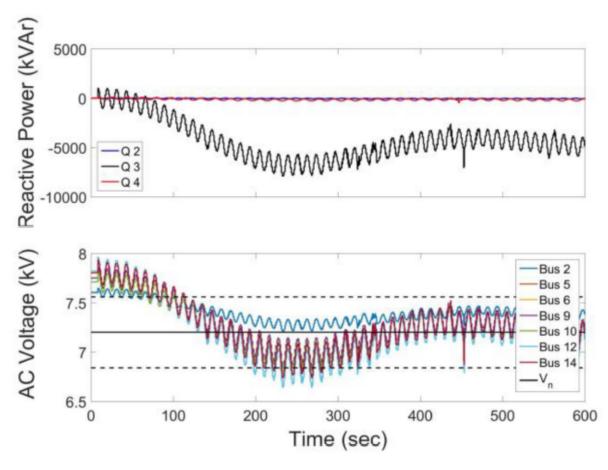
But, the upside:

- Filters and demodulation steps allow multiple controllers to coexist
- We don't need a model of the system to make this work.
- We don't need to know electricity consumption and production
- Provable optimality (convexity) and convergence for generous conditions (e.g. power flowing out at feeder rated capacity; Arnold et al TPWRS 2016, 2018)

Hardware in the loop proof of concept

- 3kW PV system interface with OPAL-RT network simulator via Ametek power amplifier
- Reduced-form model of network in Albuquerque
- Objective:

$$J = \sum_{i} C_i [V_i(u) - V_n]^2 + \sum_{j} \alpha \hat{u}_j^2$$



(Johnson et al IEEE JPV (2018))

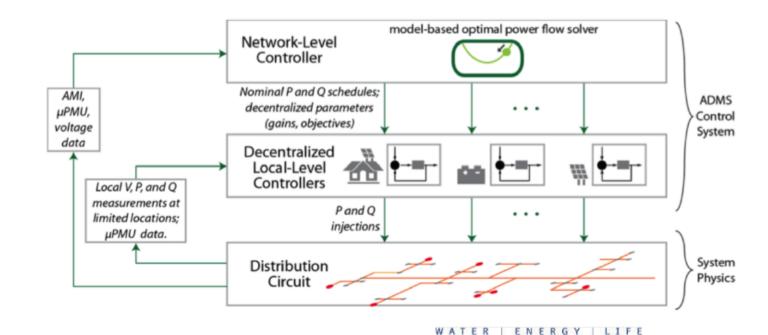
Significance and next steps

Significance

- Network optimization without models or state information
- Load buses as controllable as generators? Arnold et al, TPWRS (2018)

Some open questions

- How small can we make the probe amplitude?
- How fast can we probe (simulations 1-0.1 Hz)?
- Would manufacturers and utilities do it?



Part 2: If we were building the grid all over again, what would it look like?	

UN SDG and reliability

United Nations' Sustainable Development Goal #7

"Ensure access to affordable, reliable, sustainable, and modern energy for all."

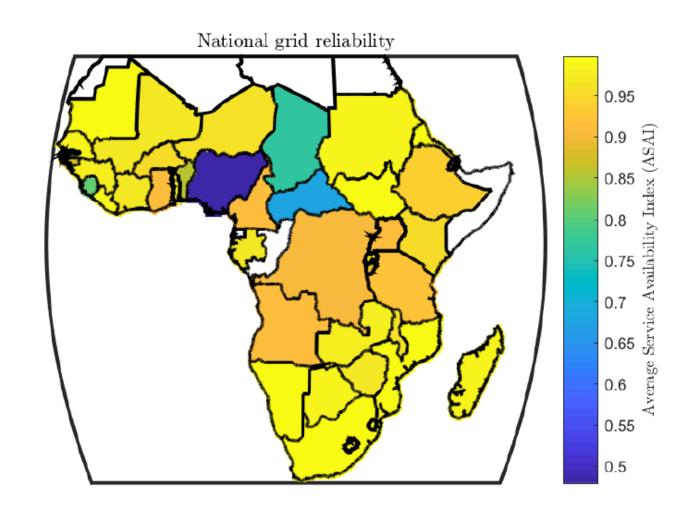
- 1.1 billion people lack access to electricity
 - 600 million in Sub-Saharan
 Africa alone
 - Those with access often use an inferior product.

UN SDG and reliability

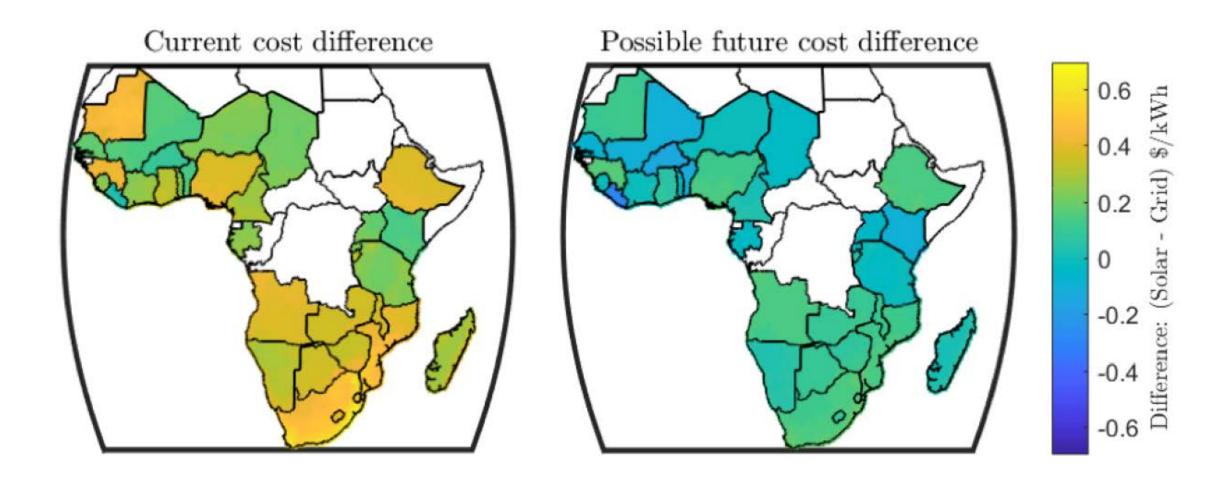
United Nations' Sustainable Development Goal #7

"Ensure access to affordable, reliable, sustainable, and modern energy for all."

- 1.1 billion people lack access to electricity
 - 600 million in Sub-Saharan
 Africa alone
 - Those with access often use an inferior product.

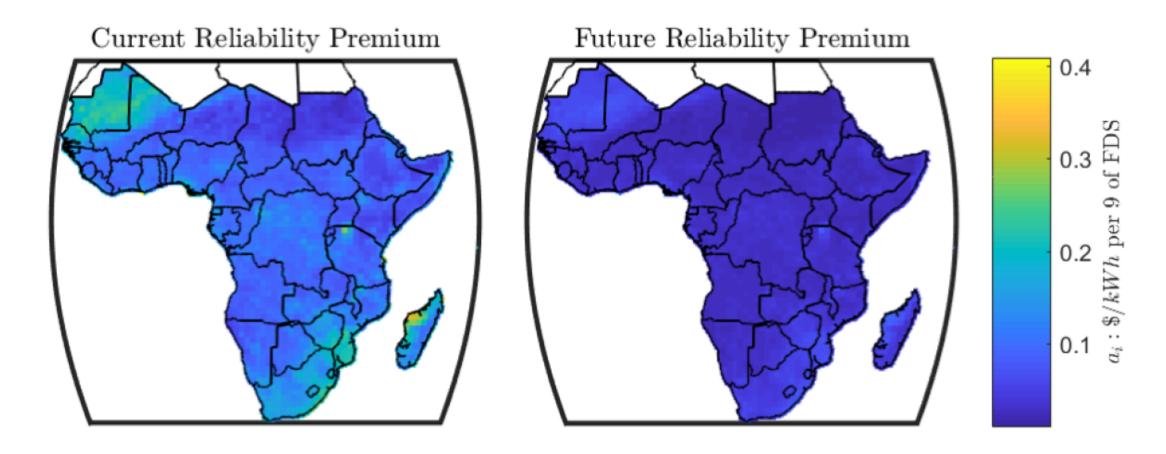


What is the potential for standalone battery-storage?



(Lee and Callaway, Nature Energy 2018)

Spatial distribution of the reliability premium



- Much of the continent around USD 0.1/kWh per "9" now
- In the future this drops to USD 0.03/kWh per "9"

Summary

In effect, we are reaching a point where batteries are becoming cheaper than wires. Added benefits:

- Fast to deploy
- Aligned incentives

Decentralized systems: credible alternative to networked systems

- Not only for systems that deliver lighting
- But for systems that deliver all but the highest power demand services
- See emac.berkeley.edu/reliability to set your own assumptions

New Sun Road system in Kitobo, UG

Do we need the grid?

Keep the network for

- High capacity systems, where diversity benefits you get from wires are large
- For existing reliable grids.
- In places where the solar resource isn't any good (climate; shading)
 - What will happen in the US?
- In places where there is no access to area for solar modules (urban)

But as solar and storage prices fall, the situations where these conditions hold will grow smaller...

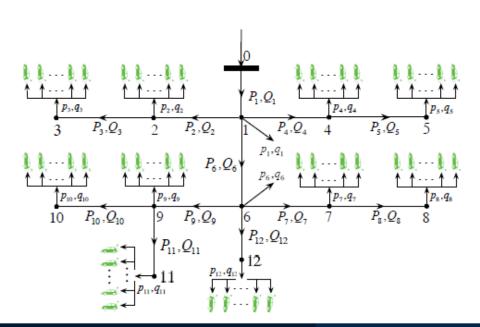
Contact and Acknowledgements

Contact info: Duncan Callaway, dcal@berkeley.edu.

People: **Dan Arnold**, **Jonathan Lee**, Tim Lipman, **Mingxi Liu**, Phillippe Phanivong, Elizabeth Ratnam, Yang Shi, Alexandra von Meier.

Funding:

EV Charging Control – Modeling



$$\begin{cases} x_i(k+1) = x_i(k) - \eta_i \Delta t \overline{P}_i u_i(k), \\ u_i(k|k) \\ u_i(k+1|k) \\ \vdots \\ u_i(k+K-1|k) \end{cases}.$$

$$\begin{cases} \boldsymbol{V}(k) = \boldsymbol{V}_0 - 2\boldsymbol{R}p(k) - 2\boldsymbol{X}q(k), \\ \boldsymbol{R} \in \mathbb{R}^{h \times h}, \ \boldsymbol{R}_{ij} = \sum_{(\hat{\imath}, \hat{\jmath}) \in \mathbb{E}_i \cap \mathbb{E}_j} r_{\hat{\imath}\hat{\jmath}}, \\ \boldsymbol{X} \in \mathbb{R}^{h \times h}, \ \boldsymbol{X}_{ij} = \sum_{(\hat{\imath}, \hat{\jmath}) \in \mathbb{E}_i \cap \mathbb{E}_j} x_{\hat{\imath}\hat{\jmath}}. \end{cases}$$

$$\mathcal{Y}_k = \mathcal{Y}_{dk} + \sum_{i=1}^n \mathcal{D}_i \mathcal{U}_i(k).$$

Comparisons

	PD perturbation	RPDS	ADMM	SPDS
	[?]	[?]	[?]	
Generic	×	✓	✓	✓
Decentralized	×	✓	✓	✓
Convergency	✓	✓	✓	✓
Optimality		×	✓	✓
Iterations	Small	Small	Large	Small
Communication	Small	Small	Large	Small

Further Look – Incorporating Customers' Preferences

Fastest charging

$$f_{i,\hat{\imath}}(\mathcal{U}_{i,\hat{\imath}}) = \tilde{\alpha}_{i,\hat{\imath}} \left\| \mathcal{U}_{i,\hat{\imath}} - \hat{\mathcal{U}}_{i,\hat{\imath}} \right\|_{2}^{2}$$

Battery state-of-health protection

$$f_{i,\hat{\imath}}(\mathcal{U}_{i,\hat{\imath}}) = \tilde{\alpha}_{i,\hat{\imath}} \|\mathcal{U}_{i,\hat{\imath}}\|_{2}^{2}$$

Designated maximum charging rates

$$\mathbb{U}_{i,\hat{i}} := \{ \mathcal{U}_{i,\hat{i}} | \mathbf{0} \leq \mathcal{U}_{i,\hat{i}} \leq \bar{u}_{i,\hat{i}} \mathbf{1}, x_{i,\hat{i}}(k) + \mathcal{B}_{i,\hat{i},l} \mathcal{U}_i = 0 \}$$

Specified energy level by a specified time

$$\mathbb{U}_{i,\hat{i}} := \{ \mathcal{U}_{i,\hat{i}} | \mathbf{0} \leq \mathcal{U}_{i,\hat{i}} \leq \mathbf{1}, \ x_{i,\hat{i}}(k) + \mathcal{B}_{i,\hat{i},l} \mathcal{U}_{i,\hat{i}} = 0,$$

$$\iota_{i,\hat{i}} x_{i,\hat{i}}(k) \leq - [\underbrace{B_{i,\hat{i},c} \cdots B_{i,\hat{i},c}}_{\hat{K}_{i,\hat{i}}} \mathbf{0} \cdots \mathbf{0}] \mathcal{U}_{i,\hat{i}} \}$$

Liu, et al., Power Systems Computation Conference, 2018.

Decentralized system costs

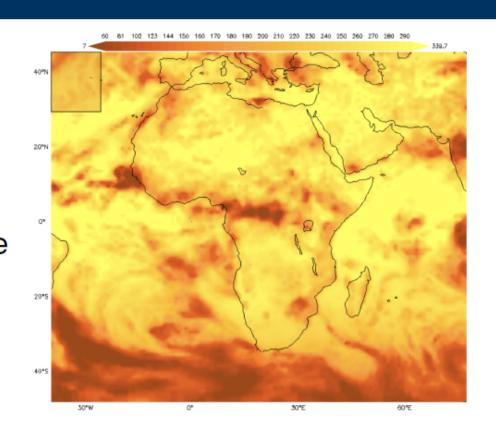
	2017	Future (c. 2025)			
Solar costs					
Modules plus DC Balance of System	1.00	0.50			
Charge controller	0.20	0.30			
Total (\$/W)	1.20	0.10			
10tal (\$/ vv)	1.20	0.00			
Battery costs					
Total (\$/kWh)	400	100			
(1)					
Load costs					
Inverter	0.30	0.15			
Soft costs plus AC					
Balance of System	1.00	0.50			
Total (\$/W)	1.30	0.65			
Additional econon					
	\$100/kW peak				
O&M costs	load/year				
	20 years; battery				
	replacement at 10				
Project length	years				
Annual discount rate	10%				

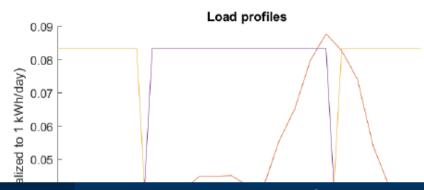
Data

 Daily solar data 1995-2005 from NASA, 1 degree resolution; converted to hourly using sun angle calculations

- Four load cases:
 - daylight hours
 - non-daylight hours
 - constant load
 - re-scaled from a village in Uganda.

Most results we present are independent of load case; we use constant load for simplicity.

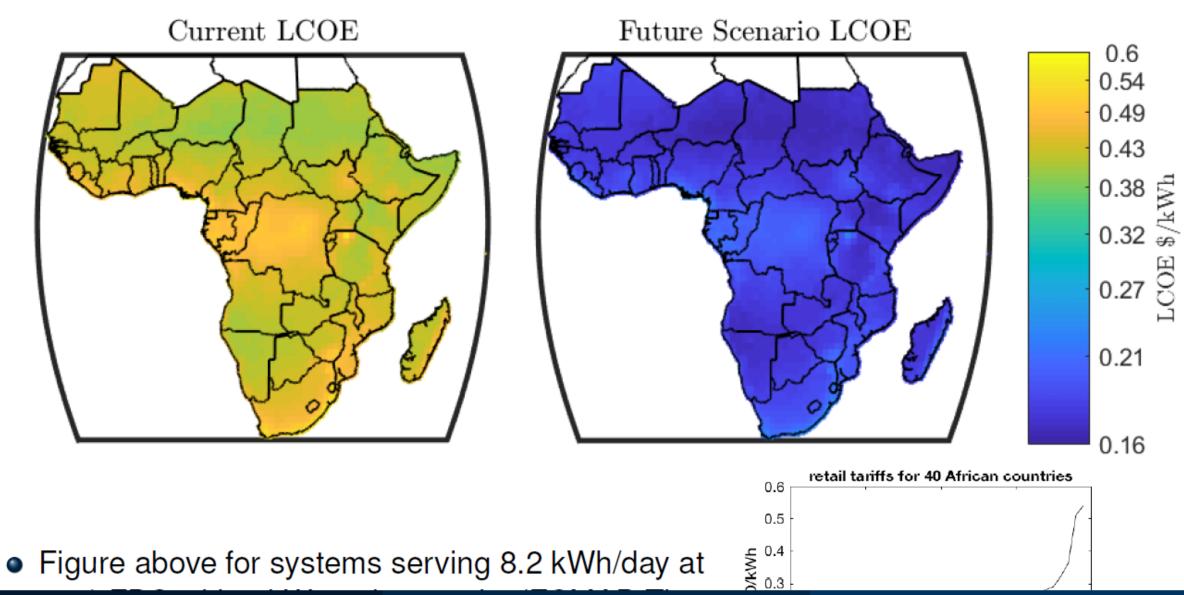




More data and model

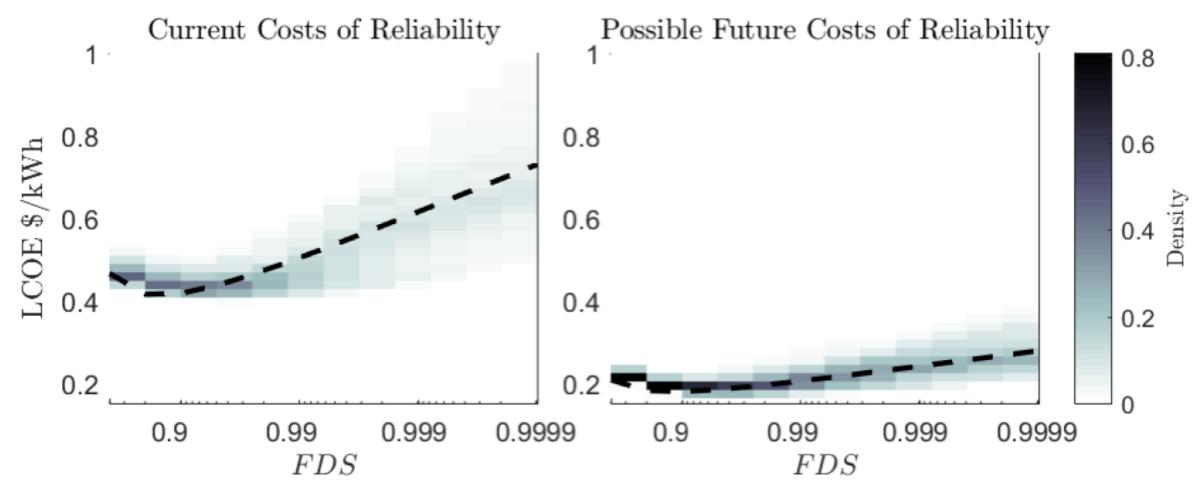
- Iso-reliability curves for a given reliability and location:
 - Curves for fraction of demand served (FDS) ranging from 0.6 (Nigeria) and 0.9999 (high-performing), for each pixel in solar data
- Levelized cost of electricity:
 - Present value of unit-cost of electricity over system lifetime.
 - We use 20 y life, 10% discount rate, battery replacement at 10 y.
 - Current: solar (USD 2.30/W) and storage (Li-ion, USD 400/kWh)
 - Future: 2-fold reduction in solar modules; 4-fold reduction in batteries
- For each cost and reliability, we find the optimal point on the iso-reliability curve by simple line search

Present and future LCOE



Linear relationship between cost and "9"s of reliability.

Cost of reliability: LCOE =
$$a_i \frac{\log(1-r)}{r} + b_i \frac{1}{r} + c_i$$



• R² here 0.6, but for individual locations 0.9-0.99.

Questions?

Duncan Callaway (dcal@berkeley.edu)