Electricity network design and operation in an era of solar and

storage

Duncan Callaway

Energy & Resources Group
University of California, Berkeley
also: EECS, Lawrence Berkeley National Lab
Key Contributors: Dan Arnold, Jonathan Lee, Mingxi Liu.

PSERC Webinar
January 22, 2019



Research overview: Energy optimization, control and analysis
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sys’[ems? Figure: Wu, Deshmukh et al, PNAS (2017)

Control and optimization:
@ Seeking renewables integration solutions; frequency and voltage regulation
@ We develop and apply a variety of optimization and control tools

@ Range of partnerships with demand response integrators, EV manufacturers, solar
PV integrators.
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Networks face emerging, competing pressures

@ New loads, spatially
diverse generation —
network value
Increases

@ New small-scale
sources of generation,
storage — reduces
the need for the
network

Duncan Callaway

Storage and PV price trajectory
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Example: Solar meets EV charging...opportunity and challenge
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Example: Solar meets EV charging...opportunity and challenge
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Low price hours for charging EVs, other electrified loads
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Talk outline

@ Increase network utilization by coordinating
distributed energy resources.

e Decentralized control desirable, but...

e Problem is strongly coupled

e We modify the primal-dual subgradient method to
handle this

e Case study: EV charging
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Talk outline

@ Increase network utilization by coordinating
distributed energy resources.

e Decentralized control desirable, but...

e Problem is strongly coupled

e We modify the primal-dual subgradient method to
handle this

e Case study: EV charging

@ Decentralized infrastructure for electrification

e Will storage replace wires — reliably?

e Finding: At forecasted costs, decentralized systems
need to become part of the central planning process.

e Finding: Much of sub-Saharan Africa could see
“reliability costs” of $USD 0.03 per “9” of reliability, per
kKWh served

q0a
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Part 1: Improving network utilization with growth in distributed energy resources
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Distribution network aware battery (EV) charging

@ Objective: Minimize some combination of:

e Charging cost (wholesale or retail)

e Ancillary services revenue

e Ultilization of infrastructure (e.g. “valley filling”)

e Impact of charging on battery state of health
@ Constraints

e Local: Max / min charge rates, max / min state of charge
e Global: Network thermal and voltage limits

If this is for an aggregation of resources, actions of one resource impact others in both the
objective and constraints
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Generic Charging Control — Mathematical Formulation

Battery charging control

arg 11}/{111 J(U)<= Convex, Coupled & Non-separable

st.U; € U; .= {Uj|0 <U; < 1,x;(k) + B;i Ui = 0} < Local constraint
n
Vi + Z DU; > EEV.T:: Linearly coupled inequality constraint

i=1

U;. Charging schedule of the ith device (0 to 1 charging rate)
Yar + > i, DiU;: All bus voltage magnitudes during charging period
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“Valley filling” Charging Control — Mathematical Formulation

Battery charging control

arg 11}}11 F(U) == - g HZ/(HE <= Convex, Coupled & Non-separable

2
s.t. U € U; := {U;|0 < U; < 1.x;(k) + B i = 0} < Local constraint
n
Var + Z DiU; > 22V0<: Linearly coupled inequality constraint
i=1

U;: Charging schedule of the ith device (0 to 1 charging rate)
Ya + > i, Ditd;: All bus voltage magnitudes during charging period
P, Background load profile
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Motivation for decentralized control and our aim

Centralized optimization...
@ Doesn't scale well

@ Requires sharing of information (conflicts with EV charging standards) and private
utility functions (privacy issues)

Decentralized/distributed algorithms ...
@ Must handle coupled/non-sep objective & coupled inequalities

@ Introduce reqgularization errors or require many communication iterations (Koshal et
al SIAM, 2011; Zhang et al TPS 2017).

In this work we set out to develop an algorithm that ...
@ Is free of convergence error and works with relatively few communication iterations
@ Does not require sharing (i) state of charge or (ii) any information with neighbors
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Setup: Dual problem and projections

@ Lagrangian

LU,

P;;+ZPZ/{

\unf, + AT (yh Zpu)

i=1

@ Projection methods can then be used to manage the local constraints with the
following equilibrium condition:

U* =Ty (U* — VyLU*,\*))
N = g (A + VaLU*, ")
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Finding the projected equilibrium

@ The primal-dual subgradient algorithm is simple:

U = Ty (uf AV Af))

...but won't converge if you decentralize the control variable projection step.

@ Koshal et al’s solution is regularization: Convex penalties on the size of the decision
variables

e Regularization also known as a “shrinkage” methods because it drives decision
variables toward zero.
e Side effect: you're no longer solving the problem you set out to.
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Could we shrink by other means and avoid the side effect?

@ What if: | | |
Z/(E(HI) = Iy, (Tuuj(ﬁ} - G’(f_f}vug[’(u(g)- )\(E}))
AED =TI (mA© + 3V, A9))

Where0 <y <land0 <7, < 1?
@ This shrinks the decision variables — but also moves us away from the desired
solution.

@ We could re-expand, but this might cause us to violate constraints again.
e — Need to re-project

@ So, we tried an algorithm that iteratively updates:
Z/{f(f—i_]) — HU;‘ ( HU;‘ (TUZ/{E({} o a'(f.f)vﬂfﬁ(uu)‘ )\(f}))>

/\(f’—l—]) _ HID} (
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“Shrunken Primal Dual Subgradient,” or SPDS — Visualization

U =11y, (mHUE (Tuuf” — o Ve LU, A“’h))

N (Hj (,.,_A O 1 3L, )\m)))
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Notes on SPDS proof

@ SPDS provably convergences to the global optimum (Liu et al. TCST 201X)

@ Proof works by guaranteeing distance to optimal point decreases monotonically.

@ Places conditions on the relationship between parameters for shrinkage (7, 7.) and
step sizes (a, )

@ Future work:

e Manual parameter tuning to reduce convergence time is tedious — results bounding
iterations to convergence?
e Another area for future work — non-constant step sizes.
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A Secured Charging Control Framework

Network info  Baseline load

. . N Y
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Example: Valley-Filling on IEEE 13 Node feeder
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Some extensions, next steps and caveats)

@ Charging decisions made locally — each agent can solve its own optimization
problem.

e Local objectives could be time to charge, battery degradation

@ Secondary transformer temperature dynamics can also be incorporated into the
problem (Liu et al PSCC 2018)

@ Next step — microgrid developer New Sun Road partnering on DOE proposal to
explore this approach

Caveat: Requires network model and all injections and extractions
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Can we do network optimization with less information?

@ Extremum seeking control (ES)

@ Basic form: modulation signal (probing signal) is injected into plant dynamics:
U= u -+ acoswt
e Each controller uses different frequency

Plant »  Objective
A .
| = Scheme is a form of
- G v / gradient search; identifies local
694 X extremum to objective.
'y 5
a cos wt coSs wt
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ES applied to network optimization: Basic example Arnold et al,

TPWRS (2016)

Control: Use PV & battery inverters and EV
chargers to inject real and reactive power at Objective
different nodes on a feeder J@)
Sensors: —

@ Measure real power at feeder head (w1, ky, @y, by, 1)

@ Measure voltage at points of concern

U FSC 2

Example device-level objective: Minimize (@2, k3, a2, b2 I2)
feeder head real power (captures resistive losses
and voltage dependency of loads) plus voltage . ESC m

(wm, Ky Gy Ao Un)

penalty terms
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Some issues you might be thinking about

First the downside:
@ If you have state constraints, they need to appear in penalty functions
@ Filter parameters, probing frequency and integrator gain all need to be tuned.
@ Problem needs to be convex for global optimality

But, the upside:
@ Filters and demodulation steps allow multiple controllers to coexist
@ We don't need a model of the system to make this work.
@ We don't need to know electricity consumption and production

@ Provable optimality (convexity) and convergence for generous conditions (e.g. power
flowing out at feeder rated capacity; Arnold et al TPWRS 2016, 2018)
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Hardware in the loop proof of concept

g 5000
@ 3kW PV system interface with OPAL-RT g 0 Yy
network simulator via Ametek power 5 5000 {—a3
amplifier 5 [ =ai
&

@ Reduced-form model of network In

Albuquerque =
@ Objective: 2
O
p—
2 ~2
J = Z CilVi(u) — V,|]= + Z il <
i } 0 100 200 300 400 500 600
: Time (sec)

(Johnson et al IEEE JPV (2018))
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Significance and next steps

Significance T —
@ Network optimization | " Contoller
without models or state o) “521;:?,’;;;‘322’3:3:;’2”1 . J' nows
information 4 o
@ Load buses as controllable (ol Frond alind gt gatr] Wit
as generators? Arnold et Tﬁﬁj’? ;-2-22‘1,‘3{ l
aln TPWRS (2018) M Distibution L — }iﬂ?f::
Some open questions R el

@ How small can we make

4.

the probe amplitude? Smﬂr er Q‘
solutions

@ How fast can we probe g RIVERSIDE ‘

PUBLIC UTILITI"™

)

(simulations 1-0.1 Hz)? Sandia %= A
- recoeocerc| |
@ Would manufacturers and @ National e=4 N R E L - ‘

Laboratories ‘
g . - ' ' [BERKELEY LAB|
utilities do it? = .
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Part 2: If we were building the grid all over again, what would it look like?
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UN SDG and reliability

United Nations’ Sustainable
Development Goal #7

“Ensure access to affordable,
reliable, sustainable, and modern
energy for all.”

1.1 billion people lack access to
electricity

@ 600 million in Sub-Saharan
Africa alone

Duncan Callaway
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UN SDG and reliability

National grid reliability

United Nations’ Sustainable
Development Goal #7 095
10.9 54
“Ensure access to affordable, 08 3
reliable, sustainable, and modern 10.8 ;:
energy for all." - :
1.1 billion people lack access to e
electricity - “;.
@ 600 million in Sub-Saharan e
Africa alone N

@ Those with access often use
an inferior product.
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What is the potential for standalone battery-storage?

Current cost difference Possible future cost difference

(Lee and Callaway, Nature Energy 2018)
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Spatial distribution of the reliability premium

Current Reliability Premium Future Reliability Premium
— 04
o
-
{0.3 &
-
02 =
‘;9_
0.1 =

@ Much of the continent around USD 0.1/kWh per “9” now
@ In the future this drops to USD 0.03/kWh per “9”
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In effect, we are reaching a point where batteries are
becoming cheaper than wires. Added benefits:

@ Fast to deploy

@ Aligned incentives
Decentralized systems: credible alternative to
networked systems

@ Not only for systems that deliver lighting

@ But for systems that deliver all but the highest
power demand services

@ See emac.berkeley.edu/reliability to

. New Sun Road system in Kitobo, UG
set your own assumptions
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Do we need the grid?

Keep the network for
@ High capacity systems, where diversity benefits you get from wires are large

@ For existing reliable grids.

@ In places where the solar resource isn't any good (climate; shading)
e What will happen in the US?

@ In places where there is no access to area for solar modules (urban)

But as solar and storage prices fall, the situations where these conditions hold will
grow smaller...
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EV Charging Control — Modeling

\ L

b bt bbb TN | i hxh
po thott At K € R
Fars P4 - Tp.q 1p.q
3 RO, 2 RO N PO 1 RO 5
y . 5 “"Q| §
TR T T O O 3 X T 1 1P 1 A T O hxh
tt--t4 pt--tt SO B R i | pe---tt < XG R ?
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L
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(xi(k + 1) = x;(k) — miAPu;i (k).

u; (k|k)
ui(k + 1k)

ui(k+ K —1k)

(V(k) = Vo — 2Rp(k) — 2Xq(k).

(2,7)€E.NE,
(2,7)€E,NE,

rj?q“ T Vi = Vak + Z Ditd;(k).
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Comparisons

PD perturbation RPDS ADMM SPDS

2] [?] [?]
Generic X v’ v’ v’
Decentralized X v’ v’ v’
Convergency v’ v’ v’ v’
Optimality v’ X v’ v’
lterations Small Small Large Small
Communication Small Small Large Small
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Further Look — Incorporating Customers’ Preferences

@ Fastest charging
fil ) =
@ Battery state-of-health protection
Fihi) = a3
@ Designated maximum charging rates

[U?._-i ‘= {z/{si‘o < z/{s..-i < ff_f-s._,-il-/r-s._.-i (k) + B-z,i.."z’{f — O}

‘Z/{s.j — u@.i

@ Specified energy level by a specified time
sa = {Z/{z 3‘0 < Z/{H <1, /‘m(k) + Bi-.i.,."ua.,i = 0.
X i(k) < —[Byie -+ Buie 0 -+ 0]U,;}

"y -

F\r
Kz,i

Liu, ef al., Power Systems Computation Conference, 2018.
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Decentralized system costs

Duncan Callaway

2017
Solar costs
Modules plus DC
Balance of System 1.00
Charge controller 0.20
Total ($/W) 1.20
Battery costs
Total ($/kWh) 400
Load costs
Inverter 0.30
Soft costs plus AC
Balance of System 1.00
Total ($/W) 1.30

Future
(c. 2025)

0.50
0.10
0.60

100

0.15

0.50
0.65

Additional economic assumptions
S100/kW peak
O&M costs load/year
20 years; battery
replacement at 10
Project length years

Annual discount rate

10%

Decentralization in Energy Systems
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@ Daily solar data 1995-2005 from NASA, 1 degree
resolution; converted to hourly using sun angle
calculations

@ Four load cases:
@ daylight hours

@ non-daylight hours 008
© constant load 008

© re-scaled from a village in Uganda.

Most results we present are independent of load
case: we use constant load for simplicity.

Duncan Callaway Decentralization in Energy Systems

blized to 1 kWh/day)

0.07

0.06

0.05

Load profiles
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More data and model

@ Iso-reliability curves for a given reliability and location:

e Curves for fraction of demand served (FDS) ranging from 0.6 (Nigeria) and 0.9999
(high-performing), for each pixel in solar data

@ Levelized cost of electricity:

e Present value of unit-cost of electricity over system lifetime.
e We use 20y life, 10% discount rate, battery replacement at 10 y.

e Current: solar (USD 2.30/W) and storage (Li-ion, USD 400/kWh)
e Future: 2-fold reduction in solar modules: 4-fold reduction in batteries

@ For each cost and reliability, we find the optimal point on the iso-reliability curve by
simple line search
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Present and future LCOE

Current LCOE Future Scenario LCOE

0.6
{ 0.54
10.49
10.43
10.38 ;

0.32 &=

027 =

0.21

/

retail tanffs for 40 African countries

0.16

£ 047 .
< /
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Linear relationship between cost and “9”s of reliability.
Cost of reliability: LCOE = ¢;22U=0) 4 p, 1 o,

r

Current Costs of Reliability Possible Future Costs of Reliability
1 1 0.8
= 0.8 0.8 0.6
2 -
=5 i =
o 0.6 - 0.6 §z
. _ - 0.4 5
C -
q = = 0-2
0.2 | - _ 0.2 " pmpm— -. | 5
0.9 0.99 0.999 0.9999 0.9 0.99 0.999 0.9999
FDS FDS

@ R’ here 0.6, but for individual locations 0.9-0.99.
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Questions?

Duncan Callaway
(dcal@berkeley.edu)
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